Many-electron Correlation from Two Electron-Reduced Density Matrices

David A. Mazziotti
Department of Chemistry
James Franck Institute
929 E. 57th St.
The University of Chicago
Chicago, IL 60637 USA

Because electrons are indistinguishable with pairwise interactions, the energy of any many-electron molecule can be written as a functional of a two-electron quantity—the two-electron reduced density matrix (2-RDM). While many successful approaches exist to recover correlation effects, most are not tractable in the limit of strong correlation in large molecular systems or materials. The 2-RDM methods can treat strongly correlated electrons at a computational scaling that grows non-exponentially with system size. Computing the 2-RDM of an N-electron quantum system requires that we constrain it to represent N electrons through constraints known as N-representability conditions. Three different approaches to the direct calculation of the 2-RDM have recently been developed: (1) the variational 2-RDM method [1,2] in which N-representability conditions are imposed explicitly by semidefinite programming, (2) the parametric 2-RDM method [3] in which N-representability conditions are imposed implicitly by parameterization, and (3) the anti-Hermitian contracted Schrödinger equation (CSE) method [4] in which the ACSE in combination with cumulant reconstruction of the 3-RDM is solved for the 2-RDM. In this lecture we will discuss recent advances in 2-RDM methods including applications to studying metal-to-insulator transitions [1], conical intersections [4], polyaromatic hydrocarbons [2], and firefly bioluminescence [5].