KAHA Ligation Generates Diverse β-Peptides for Drug Discovery

β-Amino Acids and β-Peptides

• **Structure:** Elongated one carbon atom
 – Additional positions for substitution.
• **Present in some natural products and pharmaceuticals**
• **Tunable secondary, tertiary, and quaternary structures**
• **Enhanced structural and metabolic stability relative to α-peptides**

![α-peptide structure](image1)

![β-peptide structure](image2)

![Jasplakinolide (NP)](image3)

![Sitaliptin (antidiabetic)](image4)
Synthesis of β-Amino Acids

• Requires a chiral starting material or asymmetric synthesis.
 – Arndt-Eistert homologation of α-amino acids.
 – Chiral auxiliary methods

• General approach to β-amino acid synthesis (Bode 2010)

KAHA (Ketoacid-hydroxylamine) Peptide Synthesis

\[
\text{R}^1\text{CO}_2\text{H} + \text{R}^2\text{HN}⁻\text{O}\text{Me}\text{O}\text{Me}\text{O}\text{Me} \rightarrow \text{R}^1\text{NH}⁻\text{R}^2\text{CO}_2\text{Me} \text{Me}
\]

1:1 tBuOH/H₂O (0.5 M) 1 hr, 40 C 93% Yield

Production of Non-Ribosomal Peptides (NRPs)

- Non-ribosomal peptides (NRPs)
 - Produced by enzyme assemblies (NRPS).
 - Three kinds of building blocks.
 - Examples: vancomycin, cyclosporin, and surfactin.

- Increasing NRP diversity:
 - Manipulation of cell machinery
 - KAHA ligation with diverse building blocks ("Synthetic Fermentation")
Synthetic Fermentation

Products are oligomers of varying length and sequence.

Product distribution controlled by monomer quantity.
Monomer Addition Order

Initiation	First elongation	Second elongation	Termination
5:1 BuOH/buffer pH 7.0 (0.10 M) | 45 °C, 2 h | 45 °C, 2 h | 45 °C, 2 h
5:1 BuOH/buffer pH 7.0 (0.10 M) | 45 °C, 2 h | 45 °C, 2 h | 45 °C, 2 h

Retention time (min)
Target: HCV Protease NS3/4A

- Hepatitis C Virus
 - Infects 140 million people worldwide
 - Leads to chronic liver disease
 - No vaccination and limited treatment

- Protease NS3/4A
 - Has vital role in HCV replication
 - Shallow and substrate-exposed binding region (tough target)
 - Inhibitor binding energy derived from weak lipophilic and electrostatic interactions.

Culture 1

- α-ketoamide forming terminators to target protease serine.
- Hydrophobic side chains
Culture 2

• Same model as culture 1 with different building blocks.
Culture 3 (Focused)

- M^2, M^4, and M^5 were incubated with each of combination of I and T.
- I^3 and T^4 were active even at low concentrations.
- In well C2, approximately 40 different combinations of M^2, M^4, and M^5.

![Diagram of molecules and grid showing concentration and dilution]
Culture 4 (Addition Biased)

- Only two monomers in each culture.
- Control product distribution by varying concentrations of \mathbf{M} and addition order.
 - A1-A3: 1 eq. of one \mathbf{M}
 - A4-B2: 2 eq. of one \mathbf{M}
 - B3-C1: Sequential addition of two \mathbf{M}s
 - C2-C4: Simultaneous addition of two \mathbf{M}s
- Five possible oligopeptides:
 - $\mathbf{I}^3\mathbf{M}^5\mathbf{M}^5\mathbf{T}^4$, $\mathbf{I}^3\mathbf{M}^5\mathbf{M}^2\mathbf{T}^4$, $\mathbf{I}^3\mathbf{M}^5\mathbf{M}^5\mathbf{M}^5\mathbf{T}^4$, $\mathbf{I}^3\mathbf{M}^5\mathbf{M}^2\mathbf{M}^2\mathbf{T}^4$, $\mathbf{I}^3\mathbf{M}^5\mathbf{M}^5\mathbf{M}^5\mathbf{M}^2\mathbf{T}^4$
• With just M^5, more than 1 eq. gave higher activity.
• Higher ratios of M^5 to M^2 resulted in higher activity.
• Possible active compounds: $I^3-M^5-M^5-M^5-T^4$ and $I^3-M^5-M^5-M^2-T^4$.
Lead Confirmation

- Incubating I^3 with 3.6 eq of M^5 gave lead compound in 24% isolated yield.
- $IC_{50} = 1.0 \mu M$
- Boceprevir ($IC_{50} = 0.35 \mu M$)
 - Approved by FDA in 2011.
 - Also targets protease NS3/4A.

“Synthetic Fermentation”

- Uses KAHA ligation
 - Highly chemoselective
 - Mild conditions
 - Nearly all unprotected functional groups tolerated
- Analogous to non-ribosomal peptides with I, M, and T building blocks.
- Can generate diverse product mixtures with small numbers of building blocks.
- May facilitate drug discovery by non-specialists or in remote locations.