The Maillard Reaction: Radicals and Flavor

Noah Marcus
History: The first report

- First investigation of reaction between sugars and amino acids by Louis Camille Maillard
- Reported reaction of excess d-glucose with glycine in aqueous conditions.
 - Liberation of CO$_2$ and loss of H$_2$O
 - Postulated incorporation of amino acid into sugar, forming heterocycles

Picture: This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author's life plus 70 years or less.

Some polycyclic molecules with nitrogen incorporated

Blackish substance

History: First Overall Reaction Pathway

• First overall transformation pathway was proposed in 1953 by John E. Hodge
 • Based on previous work with Carl Rist

• Proposed scheme “Hodge Scheme” is still currently accepted

• In 1979 Science Citation Index named “Chemistry of Browning Reactions in Model Systems” a Citation Classic.

Hodge, J. E., Journal of Agricultural and Food Chemistry, 1953, 1(15), 928–43
Modified Hodge Scheme

Reducing sugar + α-amino acid → N-Glycosalamines or N-fructosylamines

Amadori rearrangement → 1-Amino-1-deoxy-2-ketose (Amadori) or 1-amino-2-deoxy-2-aldose (Heyns)

Sugar dehydration → Hydroxymethyl furfural (hexoses)

Furfural (pentoses)

N-substituted 1-amino-2-deoxy-2-ketose

3-Furanones
4-Furanones
Pyrroles
Thiophenes

Retro-aldolization

Hydroxyacetone
Dihydroxyacetone

Glyoxal
Pyruvaldehyde
Glycolaldehyde
Glyceraldehyde

A reductone

+ Amino acids → Aldehydes + α-aminoketones (+ methional from methionine) (+ H2S and NH3 from cystine)

Strecker Degradation

Acetoin → Heterocyclization

Pyridines
Thiazoles
Pyrazines
Pyrroles
Oxazoles
Imidazoles
Common flavor compounds: Acyclic

Found in:

\[
\begin{align*}
\text{butanediione} & & \text{Coffee, bread crusts, stewed/ roasted meats, beer, wine} \\
\text{Methional} & & \text{Coffee, bread crusts, tea, stewed/ roasted meats, baked potato, chips, beer} \\
\text{phenylacetaldehyde} & & \text{Coffee, bread crusts, stewed meats, chocolate, wine}
\end{align*}
\]
Acyclic products from Maillard reaction

- Methional
- phenylacetylaldehyde
- 2-mercaptopyruvate
- (E)-2-((methylthio)methyl)but-2-enal
- glyoxal
- butanedione
- pyruvaldehyde
- prop-2-ene-1,1-diylbis(methylsulfane)
- glyceraldehyde
- 1,3-dihydroxyacetone
- acetoin
- glycolaldehyde

Hodge, J. E., Journal of Agricultural and Food Chemistry, 1953, 1(15), 928–43
Common flavor compounds: Cyclic

3,5,6-trimethylpyrazin-2(1H)-one

Found in:
Coffee, bread crusts, stewed/ roasted meats, toasted sesame, popcorn

4,5-dimethyl-2-(2-(methylthio)ethyl)oxazole

Found in:
Cocoa, coffee, meats, roasted barley, baked potato, roasted peanuts, French fries

1-(3H-imidazo[4,5-c]pyridin-4-yl)ethan-1-one

Found in:
Coffee, roasted barley, stewed/ roasted meats,
Heterocyclic products

5-(hydroxymethyl)furan-2-carbaldehyde (5-hydroxymethyl furfural)

3-hydroxy-2-methyl-4H-pyran-4-one

2-hydroxy-2,5-dimethyl-3(2H)-thiophenone

1-(2,3-dihydro-1H-pyrrolizin-5-yl)ethan-1-one

1-(3H-imidazo[4,5-c]pyridin-4-yl)ethan-1-one

3,5,6-trimethylpyrazin-2(1H)-one

4,5-dimethyl-2-(2-(methylthio)ethyl)oxazole

Sugar-Amine condensation

\[
\text{Aldose} + \text{RNH}_2 \xrightleftharpoons{} \text{H}_2\text{O} \rightarrow \text{Schiff base} \rightarrow \text{N-substituted glycosylamine}
\]

Hodge, J. E., *Journal of Agricultural and Food Chemistry*, 1953, 1(15), 928–43
Amadori rearrangement

N-substituted glycosylamine

Schiff base cation

enol form

keto form

N-substituted 1-amino-2-deoxy-2-ketose

Progress

Reducing sugar + α-amino acid → N-Glycosalamines or N-fructosylamines

Amadori rearrangement → 1-Amino-1-deoxy-2-ketose (Amadori) or 1-amino-2-deoxy-2-aldose (Heyns)

Condensation

3-Furanones
4-Furanones
Pyrroles
Thiophenes

NH₃
H₂S

Reductones and dehydroreductones

+ NH₃

Hydroxyacetone
Dihydroxyacetone

Glyoxal
Pyruvaldehyde
Glycolaldehyde
Glyceraldehyde

Retro-aldolization

Furfural (pentoses)

Hydroxymethyl furfural (hexoses)

- 3 H₂O

+ Amino acids

Strecker Degradation → Aldehydes + α-aminoketones (+ methional from methionine) (+ H₂S and NH₃ from cystine)

Acetoin

Heterocyclization → Pyridines
Thiazoles
Pyrazines
Pyrroles
Oxazoles
Imidazoles
Formation of reductones

N-substituted 1-amino-2-deoxy-2-ketose

Pathway may stop at this point or continue

Reductone path: Hydroxymethyl furfural

Nursten, H., The Maillard Reaction Chemistry, Biochemistry and Implications; Royal Society of Chemistry: Cambridge, 2005
Secondary reductone path

- This pathway is favored under neutral and basic conditions
- May form furones or go on to sugar fragmentations

Nursten, H., The Maillard Reaction Chemistry, Biochemistry and Implications; Royal Society of Chemistry: Cambridge, 2005
Sugar Fragmentation

- Only half of possible fragmentation paths shown
- Multiple pathways, all giving different products

Nursten, H., The Maillard Reaction Chemistry, Biochemistry and Implications; Royal Society of Chemistry: Cambridge, 2005
Progress

Reduction sugar + a-amino acid → N-Glycosalamines or N-fructosylamines

Condensation → Amadori rearrangement

1-Amino-1-deoxy-2-ketose (Amadori) or 1-amino-2-deoxy-2-aldose (Heyns) → Hydroxymethyl furfural (hexoses) or Furfural (pentoses) → 3 H₂O

Sugar dehydration

Reductones and dehydroreductones

3-Furanones 4-Furanones Pyrroles Thiophenes

NH₃ H₂S

Retro-aldolization

Hydroxyacetone Dihydroxyacetone Glyoxal Pyruvaldehyde Glycolaldehyde Glyceraldehyde

+ Amino acids Strecker Degradation

Aldehydes + α-aminoketones (+ methional from methionine) (+ H₂S and NH₃ from cystine)

Acetoin

Heterocyclization

Pyridines Pyrazines Oxazoles Thiazoles Pyrroles Imidazoles
Saccharinic Rearrangement

- Enolize into enediol
- One alcohol jumps onto other carbon, carbon losing OH gains H other carbon
- At same time carbonyl reforms
- As carbonyl reforms proton is transferred
- OH migration, carbonyl reformation and proton transfer are one concerted step

Isabell, H. S., J. Res. Natl. Stand. 1944, 32, 45-59
Progress

Reducing sugar + α-amino acid → N-Glycosalamines or N-fructosylamines

- Amadori rearrangement

1-Amino-1-deoxy-2-ketose (Amadori) or 1-amino-2-deoxy-2-aldose (Heyns)

- 3 H₂O

- Furfural (pentoses)

- Hydroxymethyl furfural (hexoses)

Sugar dehydration

3-Furanones, 4-Furanones, Pyrroles, Thiophenes

NH₃, H₂S

Reductones and dehydroreductones

- Retro-aldolization

Hydroxyacetone, Dihydroxyacetone

Glyoxal, Pyruvaldehyde, Glycolaldehyde, Glyceraldehyde

+ Amino acids (→ Aldehydes + α-aminoketones (+ methional from methionine) (+ H₂S and NH₃ from cystine))

Strecker Degradation

Acetoin

Heterocyclization

Pyridines, Thiazoles, Pyrazines, Pyrroles, Oxazoles, Imidazoles
Heterocyclic products

5-(hydroxymethyl)furan-2-carbaldehyde
(5-hydroxymethyl furfural)

3-hydroxy-2-methyl-4H-pyran-4-one

2-hydroxy-2,5-dimethyl-3(2H)-thiophenone

1-(2,3-dihydro-1H-pyrrolizin-5-yl)ethan-1-one

1-(3H-imidazo[4,5-c]pyridin-4-yl)ethan-1-one

3,5,6-trimethylpyrazin-2(1H)-one

4,5-dimethyl-2-(2-(methylthio)ethyl)oxazole
Formation of pyrazines is a path almost exclusive to asparagine, lysine and dipeptides

Pyrazines

- Formation of pyrazines is a path almost exclusive to asparagine, lysine and dipeptides
- Due to pyrazine ubiquity, this path is common in Maillard reaction

How butanedione combines with amine

Heterocyclic products

5-(hydroxymethyl)furan-2-carbaldehyde (5-hydroxymethyl furfural)

3-hydroxy-2-methyl-4H-pyran-4-one

2-hydroxy-2,5-dimethyl-3(2H)-thiophenone

1-(2,3-dihydro-1H-pyrrolizin-5-yl)ethan-1-one

1-(3H-imidazo[4,5-c]pyridin-4-yl)ethan-1-one

4,5-dimethyl-2-(2-(methylthio)ethyl)oxazole

3,5,6-trimethylpyrazin-2(1H)-one
Pyrroles and Pyrrolizidines

Addition of a second component

Example of how viable molecules are still present after they have “left” the reaction

Group Problem

Determine which fragmentation product combines with histidine

Propose a pathway for how your chosen starting material forms the shown product

(Hint: No secondary fragmentation products combine in later stages)

Choices:

- butanedione
- pyruvaldehyde
- Methional
Browning potential: melanoidins

Hodge, J. E., Journal of Agricultural and Food Chemistry, 1953, 1(15), 928–43
Melanoidins

- High molecular weight brown polymers, with unknown overall structure
- Masses identified from 1 kDa to >24 kDa
- Oligomers of heterocyclic compounds and/or sugar fragments
- 13C-, 15N-NMR, MALDI-TOF mass spec and IR have determined presence of pyridines, pyrazines, pyrroles and imidazoles
- Oligomers from 14 to >30 identified
- Normally 3-4% nitrogen

Nursten, H., The Maillard Reaction Chemistry, Biochemistry and Implications; Royal Society of Chemistry: Cambridge, 2005
Melanoidin constitution

- Constitution of melanoidins vary depending on aldehyde and amine condensing
- Rate of melanoid production is dependent on temperature

X = NR, O

Investigation toward melanoidin structures

- Constitution of melanoidins vary depending on aldehyde and amine condensing

Observed content in melanoidin

- High ether content
- High alcoholic hydroxyl content
- High enolic hydroxyl content, with low ether content

Aldehyde and amine condensed

- Furfural and glycine
- Glucose and glycine
- 2-oxopropanal and glycine

Electron spin resonance spectroscopy (ESR)

- In the presence of a magnetic field (H), the charged dipoles associated with the unpaired electrons line up either parallel or antiparallel to the direction of H and to precess about the field axis at a frequency proportional to the strength of H
- The difference in energy between the two state can be measured by the equation: \(\Delta E = \hbar \nu = g \mu_b H \)
- \(\hbar \) = Planck’s constant
- \(\mu_b \) = Bohr magneton constant
- \(\nu \) = precession frequency
- \(H \) = magnetic field strength
- \(g \) = spectroscopic splitting factor and changes with an electron’s proximity to magnetic nuclei (in absence of magnetic nuclei \(g = 2.0023 \) MHz/gauss)
ESR data

• In practice the difference in energy is reported as an absorption and plotted against field strength
• Spectra are normally of the first derivative of this absorption and entire area is measured
 • May be a second derivative
ESR spectra

$\nu = 9388.2 \text{ MHz}$

Absorbance

First Derivative

Magnetic Field Strength (G)
Gathering structural information

• If an electron is near a magnetic nuclei then there is hyper-fine splitting
• The signal of the electron is split by the magnetic nuclei by $2I+1$
 • I = spin quantum number of the magnetic nucleus

• Think of ESR as NMR for electrons and hyperfine splitting as J-values
Hyperfine splitting
Radicals measured in ESR

• Electrons have a “spin” that describes the magnetic field (magnetic moment) developed by their rotation as charged particles

• Ordinary organic molecules have all their electrons paired up therefore all spins cancel
 • Non-magnetic or diamagnetic moments

• Free radicals are unpaired and not cancelled causing a paramagnetic moment that can be measured

• To measure a radical it must be stable enough to exist at a concentration of $>10^{-9}$ M at a time

Observation of radicals

• Stable free radicals first observed by Electron Spin Resonance spectroscopy (ESR) in sample of roasted coffee
• The concentration of free radicals is dependent on roasting times
• Radicals found to be present in grounds after brewing process with no change in concentration
 • Radical carrying species must not be water soluble

Studying radical stability

- The melanoidin’s original radical concentration was measured as 1.9×10^{17} spin/gram
- After two weeks the radical concentration declined by only one third
 - Stored under dry air at room temperature

![Chemical reaction diagram](image_url)

Following radicals through the reaction

• ESR and UV-Vis was used to follow radicals as the Maillard reaction progressed from sugar to melanoidin

• Two distinct radicals were observed
 • One novel radical with a hyper-fine peak structure
 • One radical corresponding to known melanoidin radical character

• α- and β-amino acids gave significantly different splitting patterns
 • β-amino acids splitting pattern was found to be analogous to when n-butylamine was used

\[
\text{arabinose} + \text{alanine} \xrightarrow{\text{Water}} \text{Melanoidins}
\]

Melanoidin free radicals

- Model reactions of glucose with glycine, glutamine and lysine gave different melanoidins all with unique radicals
- Higher weight melanoids gave higher concentration of radicals
- All radicals were stable including carbon centered radicals
 - Radicals were observable with no appreciable decrease in concentration after 1 year of storage at 4°C

The novel radical peak

Hyper-fine peaks in ESR spectra were found to be due to 1,4-disubstituted pyrazinium radical cations.

Structure deduced from ESR studies on various Maillard condition:
 - Found as a result of aliphatic amines, and alanine reacting with any group containing an enediol group or potential for an enediol group.

Structure Deduction

- Almost all hyperfine structures gave splitting pattern shown
- Coupling to neighbors was shown and structure was elucidated from spectra
- Compared and matched to spectra of synthesized compound

The novel radical peak: creation

- Progression of radical followed via ESR
- Radical cation observed half-life of 10 minutes
- Dication rapidly converted into dihydrohydroxy and dihydrodihydroxy derivatives in water
 - Presence confirmed via LC-MS
- Amine must be a primary amine
Radicals in the Maillard pathway

- Two different reaction paths emerge: 1) Classic Hodge route; 2) Radical path

Hodge route:

sugars + amino acids \rightarrow glycosylamines \rightarrow Amadori compounds \rightarrow reductones \rightarrow melanoids

Radical Path:

sugars + amino acids \rightarrow Glycosylamines and/or Amadori compounds \rightarrow C2 and/or C3 fragments \rightarrow free radicals \rightarrow melanoids

Determination of dominant path

• Relative proportion of ionic (Hodge) and radical involvement investigated
• DPPH used to quantify both ionic and radical content via UV-Vis
 • Upon reaction with ions or radicals absorbance of DPPH (529nm) is lost
• Ionic intermediates also quantified with ferric ion transformed into ferrous ion
 • Formation of colored (505nm) phenanthroline-ferro(II) complex followed by UV-Vis
• Screened various amino acid and sugar combinations and pH: 5, 7 and 8

Radical pH dependence

- Ionic path is generally dominant at low pH
- Radicals present at 60-80% in early reaction stages at pH 7 and above

Radical dependence on amino acids

- Structure of amino acids had small effect on ion.radical ratios

Radical dependence on sugar

- Sugar structure plays a key role in radical content
- Disaccharides give lowest amount of radicals: cleavage of glycoside bond is rate limiting
- Monosaccharides with higher proportion of acyclic structures lead to higher radical formation

(at pH=7)

glucose > fructose >> maltose

Proposed radical mechanism

- Mechanism investigated in systems with iron and copper
 - Either metals are available in most food systems
 - Electron transfer is observed in reaction systems under metal and oxygen free environments

\[
\text{R} = \text{amino acid residue} \\
\text{R}_1 = \text{sugar residue}
\]

Free radicals and coffee: redux

• Unroasted coffee beans have a concentration of free radicals (CFR) of 10^{15} spins/gram
 • Possibly due to sun exposure during bean drying process or metal ions in the bean
• Roasted coffee has increased CFR to 10^{16} to 10^{17}
• CFR values increased as degree of roast increased
 • Dark roast has more free radicals than light roast
• Radicals found to be especially stable
 • Long lived even after multiple aqueous extractions
 • High proportion of carbon centered radicals to hydroxyl radicals
A look back at coffee’s radicals

• Radical extinction of dry coffee with CFR of 7.5×10^{16} was observed
• Over the course of 10-15 min hydroxyl radical singlet rapidly disappeared
• Secondary radical signals persisted with only slow changes
• Secondary signals proposed to correspond to the lysine derived radical cation involved in protein cross-linking and melanoidin formation
 • CROSSPY radical
• Only hydroxyl radicals reacted with radical spin traps

Conclusion

• Maillard reaction: a complex compilation of reactions competing and converging to create the flavors in food
• Hodge path is still accepted, competing radical pathways are possible and probable
• Radical pathways may give insight into formation of heterocycles and antioxidant activity of foods
References