A Novel Method of Pyrrolidine Synthesis

Martin D. Eastgate
Supervisor: Dr S. Warren

University of Cambridge
Expression ions, THPS and lactones
Espuleronium Ions and the Evans-Mislow Rearrangement

D. House et al., Chem. Commun., 2000, 1781
J. Frame and S. Water, unpublished work

Espuleronium Ions and THF - Kinetic Methods

I. Caggiano

154% 854%

196% 744%

974% 694%

Pyrroldines
Pyrroolidines

88	0	94
30	4	3
14	7	2
0	9 < 95	H

(% Allylic Sulfide Yield, % Pyrrolidine Yield, % H-Group)

Pyrroolidines
E-Enolate

Z-Enolate

Tandem Procedure

Aldol Chemistry

Davies style Michael additions of lithium C-methylbenzyl amides proceed with high diastereoselectivity.

Disconnection
Pyruvylamine Synthesis

S. G. Davies et al., Chem. Commun., 2000, 337

Dehydration (J. P. Cenzer)

Mono-deprotection by tert ammomium nitrate (CAN) (S. G. Davies)
Mechanism
This is consistent with internal general base catalysis, which effects only the rate of carbanion formation.

There is a kinetic isotope effect for the formation of imidazole, of \(k^A / k^D = 2 \).

Mechanism

Structural Modifications

Chemical Structures

- Reagents:
 - No Reagents
 - DCC
 - DMAP

- Reactions:
 - 1:2:1
 - 3:2:1
Episollium Ion X-Ray Structures

C-S bond lengths in X-ray structures of Episollium ions ≈ 1.9 Å

<table>
<thead>
<tr>
<th>C-O Bond / Å</th>
<th>C-S Bond / Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.437</td>
<td>2.746</td>
</tr>
<tr>
<td>2.472</td>
<td>2.129</td>
</tr>
<tr>
<td>2.737</td>
<td>2.029</td>
</tr>
</tbody>
</table>

1.0, 2.0 Sulfate material
2.0, 1.0 Sulfate
1.0, 2.0 Sulfate

Molecular Model
A. Tosimizu, C. Hirasawa, K. Tamao. Tetrahedron. 1994, 50, 8997

Tosimizu has developed a stereospecific Ritter reaction

Need to be able to form a stable carbocation intermediate

The Ritter reaction