Nickel Catalyzed sp3-sp3 Couplings

Nicholas Anderson
Denmark Group Meeting
February 12th, 2008
Difficulties in sp3-sp3 Cross Coupling

- Difficult oxidative addition
 - Sterics - three substituents prevent access to the C-X bond
 - Electronics - electrons are more equally shared in an sp3 C-halide bond than in sp2 C-halide bond.

- Slow reductive eliminations
 - Increases reaction time
 - Increases amount of β-Hydride elimination
 - Increases amount of reduction of alkylhalide
Outline

Part I: Knochel
 Development of alkylzinc reagents for coupling

Part II: Fu
 Elaboration of nickel catalyzed alkylzinc couplings

Part III: Vicic
 Mechanistic studies of alkyl zinc couplings

Part IV: Kumada
 Alkyl grignards as the organometallic donor
First Example

Initial substrate scope:
Homoallylic and bishomoallylic primary iodides
Alkene or α,β-unsaturated ester.

Organozinc
Symmetrical
1^0 and 2^0 Alkyl
TMS protected vinyl alcohols
Esters are tolerated

Knochel Mechanistic Proposal

R=nBu or Ph
X= Br or I

Higher temperatures promotes dissociation
nPentyl\textsubscript{2}Zn gives more halide-zinc exchange than Et\textsubscript{2}Zn

Expanding the Scope

\[\text{[Ni(acac)2] (10mol\%)} \quad n\text{-Pent-Zn} \quad \text{THF/NMP} \quad -35^\circ\text{C}, 4h \]

\[\text{PhCOMe (0eq)} \quad 20\% \quad \text{PhCOMe (1eq)} \quad 71\% \]

\[n=2, 65\% \text{ yield} \quad n=3, 71\% \text{ yield} \]

Conclusion: Stronger π-acids promote coupling

Catalyst Development

Can an external olefin be added as a co-catalyst to facilitate coupling?

All gave similar conversion times and a moderate amount of zinc-bromide exchange.

Completely inhibits the coupling.

Gives fast conversion as well as suppresses formation of zinc halogen exchange.

Broad functional group tolerance
Notable exceptions: alcohols and amines

Reducing Waste: AlkylZnX Reagents

2eq of Dialkylzinc reagents are typically used

\[
\begin{align*}
\text{O} & \quad \text{I} \\
\text{Ph} & \quad \text{(CH}_2\text{)}_3
\end{align*}
\]

Ni(acac)_2 (10mol\%)
F- \quad \text{20mol\%}
\begin{align*}
\text{O} & \quad \text{R} \\
\text{Ph} & \quad \text{(CH}_2\text{)}_3
\end{align*}

RZnBr (3eq)
n-Bu_4NI (3eq)
THF/NMP
-35°C, 16h

Allows for more easily prepared RZnI reagents to be used.

RZnI reacts with TMSCH_2Li to give RZnCH_2TMS

\[
\begin{align*}
\text{O} & \quad \text{I} \\
\text{Ph} & \quad \text{(CH}_2\text{)}_3
\end{align*}
\]

Ni(acac)_2 (10mol\%)
F- \quad \text{20mol\%}
\begin{align*}
\text{O} & \quad \text{R} \\
\text{Ph} & \quad \text{(CH}_2\text{)}_3
\end{align*}

RZnCH_2TMS (3eq)
THF/NMP
-35°C, 6h

Outline

Part I: Knochel
 Development of alkylzinc reagents for coupling

Part II: Fu
 Elaboration of nickel catalyzed alkylzinc couplings

Part III: Vicic
 Mechanistic studies of alkyl zinc couplings

Part IV: Kumada
 Alkyl grignards as the organometallic donor
Initial Ligand Development

\[\text{Br} + \text{BrZn-n-nonyl} \xrightarrow{\text{Ni(cod)\textsubscript{2} (4mol%)}} \text{n-nonyl} \]

\[\text{R-Pybox} \quad \text{R = t-Bu, i-Pr, Ph, s-Bu} \]

\[\text{Indanyl-Pybox} \]

10 or 20 alkyl bromides or iodides
Highly functional group tolerant
62-78\% yield

Asymmetric Catalysis

\[
\text{NiCl}_2\text{•glyme (10mol\%) } \\
\text{(R)-i-Pr-Pybox (13mol\%) } \\
\text{R}^1\text{ZnX } \\
\text{DMI/THF, 0°C}
\]

51-90% yield
77-96%ee

\[
\text{NiBr}_2\text{•diglyme (10mol\%) } \\
\text{(S)-i-Pr-Pybox (13mol\%) } \\
\text{R}^1\text{ZnX (1.3eq) } \\
\text{DMI/THF, 0°C}
\]

39-89% yield
91-98%ee

1 example of a benzylic non-indane bromide:
63%, 75%ee

Asymmetric Catalysis (Part II)

When $R^1 \neq R^3$: If $R1$ is smaller, the constitutional isomer is formed.

If R^1 is e^- withdrawing, substitution is always at the γ position.

Substrate scope is excellent: esters, amides, silyl ethers, acetals, alkenes, phosphonate ester, and Weinreb amide.

Formal Total Synthesis of Fluvirucinine A_1

From all the synthesis is of Fluvirucinine A_1

Boranes as the Organometallic Source

Tolerant of protected alcohols (TBS) and amines (Cbz)
Rate: $X = I > Br >> Cl$
 $2^o > 1^o >> 3^o$ (very low yielding)

Outline

Part I: Knochel
 Development of alkylzinc reagents for coupling

Part II: Fu
 Elaboration of nickel catalyzed alkylzinc couplings

Part III: Vicic
 Mechanistic studies of alkyl zinc couplings

Part IV: Kumada
 Alkyl grignards as the organometallic donor
Some Mechanistic Insights

Both species shown above are catalytically active. Propose a mechanism for the coupling reaction.
Proposed Mechanism

The Ni(I) alkyl complex was independently synthesized and also shows catalytic competence.

Agrees with Knochel’s observation that 1,4-dinitrobenzene inhibited the reaction.

Outline

Part I: Knochel
Development of alkylzinc reagents for coupling

Part II: Fu
Elaboration of nickel catalyzed alkylzinc couplings

Part III: Vicic
Mechanistic studies of alkyl zinc couplings

Part IV: Kumada
Alkyl grignards as the organometallic donor
Grignards as the Organometallic Source

\[R-X + R'-\text{MgX} \xrightarrow{\text{NiCl}_2} R-R' + \text{MgX}_2 \]

1 eq RX
R = alkyl
X = F, Cl, Br, OTs

1.3 eq R'\text{MgX}
R' = aryl or alkyl
X' = Cl or Br

Substrate scope is diminished, tolerant of alkenes and arylbromides.

Capable of coupling with alkyl fluorides.

Kambe et. al. JACS. 2002, 124, 4222-4223
Mechanism

\[
\begin{align*}
\text{NiBr}_2 + 2\text{eq } n-C_8H_{17}\text{MgCl} + \text{isoprene} & \xrightarrow{\text{THF}} n-C_8H_{18} + 1\text{-octene} \\
43\% & \quad 45\%
\end{align*}
\]

\[
\begin{align*}
\text{Ni(COD)} + 1\text{eq } n-C_{10}H_{21}\text{Br} + \text{1,3-butadiene} & \xrightarrow{\text{THF}} \text{No Reaction}
\end{align*}
\]

To rule out a radical mechanism:

According to Kambe:
“This result would rule out a radical mechanism.”

Kambe, N.; et. al. JACS. **2002**, *124*, 4222-4223.
Conclusions

- Ni catalyst systems are robust and efficient
- Cross coupling of sp3-sp3 centers can be used in total synthesis
- Cross coupling can be used to set 2o stereo-centers
For Reviews of Alkyl-Alkyl Couplings

