Amphoteric Molecules
< Chemistry of Andrei K. Yudin >

Hyung Min Chi
17 JUNE 2014
Amphoteric molecules

• Amphoteric?
 – Greek word “amphoteros” (both of two)
 – Amphotericism in acid/base chemistry
 – Amino acids (thermodynamic amphotericism)

• Amphoteric molecules
 – Contains functional groups that are normally incompatible
 – Yudin and coworkers
 – Nucleophile & electrophile in one molecule
 – Aziridine aldehydes
 – α-Boryl aldehydes

Other “Amphoteric” molecules

• “Ambiphilic”
 – P. R. Hanson & coworkers
 – [4+4] cyclization of benzosulfonamide with α-quinone methide

• “Amphiphilic”
 – Y. Yamamoto & coworkers
 – Pd-catalyzed allylation reactions

Outline

- Aziridine aldehydes
 - [1,3] Amphoteric system
 - Preparation of aziridine aldehydes
 - Reactions on the aldehyde
 - Reactions on both moieties

- \(\alpha\)-Boryl aldehydes/carboxylic acids
 - [1,2] Amphoteric system

- \(\alpha\)-Boryl cyanate/cyanides
 - [1,3] Amphoteric system

- Acylboronates
 - [1,1] Amphoteric system
[1,3] Amphoteric System: Aziridine Aldehydes

- Orthogonal functional groups
 - Nucleophile: amine (aziridine)
 - Electrophile: aldehyde

- Stability of \(\alpha\)-Amino Aldehyde System
 - Energetically uphill to aziridinium ion
 - Spontaneous Dimerization
 - Fuzed ring of aziridine and 5-oxazolidinol
 - Single diastereomer (X-ray structure)

• Synthetic Routes
 – From Boc-amino acids
 \[
 \begin{align*}
 \text{NHBoc} & \rightarrow \text{Boc} \\
 \text{R-CO}_2\text{H} & \rightarrow \text{R-C}=(\text{N})=\text{O} \\
 \text{1. isobutyl chloroformate} & \rightarrow \text{N-methyl morpholine} \\
 \text{2. NaBH}_4 & \\
 \text{3. TsCl, KOH} & \\
 \end{align*}
 \]
 – From Serine ester
 \[
 \begin{align*}
 \text{HO-CO}_2\text{R}’ & \rightarrow \text{aziridine ester} \\
 \text{NH}_2 & \rightarrow \text{PPh}_3, \text{DIAD} \\
 \text{aziridine aldehyde} & \rightarrow \text{DIBAL} \\
 \text{Staudinger reaction} & \\
 \text{PPh}_3 & \\
 \text{monomer} & \\
 \end{align*}
 \]
 – From Oxiranyl ester
 \[
 \begin{align*}
 \text{R-CO}_2\text{R}’ & \rightarrow \text{aziridine aldehyde} \\
 \text{O} & \rightarrow \text{NaN}_3 \\
 \text{OH} & \\
 \end{align*}
 \]
Reactions of Aldehydes

- Reduction / Reductive Amination
 - Quantitative yields with borohydride reagents
 - Proceeds via an open-dimer intermediate
 - Release of monomer / fast redimerization

Reactions of Aldehydes

- Peptidomimetic Conjugates
 - Preparation of diamine derivatives

- No epimerization or overalkylation observed
- Attributed to the short lifetime of the open-dimeric imine intermediate (ODI)
- Steric hindrance and low concentration of the ODI prevents overalkylation

Reactions of Aldehydes

- Borono-Mannich Reaction
 - Vicinal aziridine-containing vinyl diamine
 - Exclusively syn selective process
 - Involvement of open-dimeric iminium N,O-chelate
 - Alkenyl group migration onto the si face

Reactions of Aldehydes

- **Indium (0)-Mediated Diastereoselective Allylation**
 - Organized transition structure accounts for the high diastereoselectivity
 - DFT analysis shows a pocket for Indium surrounded with one N and two O

- **Wittig Reactions**
 - C-vinyl aziridines
 - E/Z controlled by solvent

Reactions of Aldehydes

- Seyferth-Gilbert Homologation
 - Bestmann-Ohira reagent
 - C-ethynyl aziridines (strained propargyl amines)
 - α-amino allene formation with 9-BBN

\[\text{[Seyferth-Gilbert Homologation diagram]} \]

\[\text{[Seyferth-Gilbert Homologation reaction]} \]

Reactions of Aziridines (Group Question)

• Initial Interaction of Aldehydes
• Pictet-Spengler Reaction
 – Access to pentacyclic scaffold through a single cascade reaction

\[
\text{Ph} - \text{NH}_2 \xrightarrow{\text{TFE or toluene}} \text{Ph} - \text{NH} - \text{Ph} + \text{Ph} - \text{NH} - \text{Ph}
\]

– Provide the mechanism for the above reaction

\[
toluene \text{ 80 } ^\circ \text{C, mixture of I : II = 1 : 2}
\text{TFE -20 } ^\circ \text{C, exclusively I (>20:1)}
\]

Reactions of Aziridines

- Initial Interaction of Aldehydes
- Pictet-Spengler Reaction
 - Access to pentacyclic scaffold through a single cascade reaction

- Iminium ion formation
- Intramolecular Ad_{E}Ar followed by intramolecular aziridine attack
- Solvent and T dependent on diastereoselectivity

Reactions of Aziridines

- Ugi Multi-component Reaction
 - Macrocyclic peptide formation
 - High concentration
 - High diastereoselectivity
 - No epimerization, no dimer/oligomerization observed

![Chemical structures and mechanisms](image)

Reactions of Aziridines

• Mechanism for the Ugi Multi-component Reaction

- Iminium formation
- Isocyanide α-addition
- Transannular attack of aziridine
- Presence of the nucleophilic aziridine at the α-position is responsible for the high yields and high diastereoselectivities

Reactions of Aziridines

- Initial Interaction of Aziridines
- Reaction with Isocyanates

- Solvent dependent (Et$_2$O/HFIP)
- In Et$_2$O: Dimeric carbamate
- In HFIP: Reduced fused hydantoin
- Dimer dissociation under HFIP
- Hydantoin formed when isolated dimeric carbamate product is treated with HFIP

Reactions of Aziridines

- Baylis-Hillman Products
 - Exclusive diastereoselectivity
 - Formation of 8-membered cyclic intermediate (dimeric intermediate)
 - Ring opening by elimination of aziridine

Outline

• Aziridine aldehydes
 – [1,3] Amphoteric system
 • Preparation of aziridine aldehydes
 • Reactions on the aldehyde
 • Reactions on both moieties

• α-Boryl aldehydes/carboxylic acids
 – [1,2] Amphoteric system

• α-Boryl cyanate/cyanides
 – [1,3] Amphoteric system

• Acylboronates
 – [1,1] Amphoteric system
[1,2] Amphoteric System: α-Boryl Aldehydes & Carboxylic Acids

- MIDA (N-methyliminodiacetyl) Boronates
 - Electron-rich boron centers
 - Thermodynamically and kinetically stable C-bound isomer

- Preparation
 - Bench stable white solids
 - IR stretch: 1701 cm\(^{-1}\), \(^1\)H NMR: 9.73 ppm
 - Rearrangement of oxiranyl MIDA boronates
 - 1,2-boryl migration (deuterium labeling)

\[\text{R} \quad \text{BF}_3 \cdot \text{Et}_2 \text{O} \quad \text{DCM} \quad \text{MeN} \quad \text{B} \quad \text{O} \quad \text{R} \quad \text{H} \]

\[\text{3a (R} = \text{Ph)} \quad \text{BF}_3 \cdot \text{Et}_2 \text{O} \quad \text{DCM} \quad -30 \text{ to } 0 \degree \text{C} \quad \text{MeN} \quad \text{B} \quad \text{O} \quad \text{R} \quad \text{H} \quad \text{D} \]

\[1,2\text{-boryl migration} \]

\[4a (98\%) \]

α-Boryl Aldehyde

- Various Transformations of the Aldehyde
 - Reaction with amines and amides
 - α-Bromination
 - Pinnick oxidation
 - In-mediated allylation
 - Wittig reaction
 - *gem*-Dibromoalkene
 - Triflate enol ether
 - Silyl enol ether
 - Pd-catalyzed α-allylation

α-Boryl Aldehyde

- Reactions of the Boronate
- Petasis Reaction
 - C-C Bond formation
 - Via pinacolyl boronate intermediate

- Allylated α-Boryl Alcohol
 - Oxidation with basic peroxide
 - Skipped diene preparation
α-Boryl Aldehyde

- Reactions of the Aldehyde
- Pinnick Oxidation
 - α-Boryl Carboxylic Acids
 - Bench stable white solids

- Configurational stability at α-position of the acid product
- Treatment with t-BuOH/D$_2$O, 0% of deuterium incorporation

\(\alpha \)-Boryl Carboxylic Acid

- Curtius Rearrangement
 - Treatment with DPPA
 - \(\alpha \)-boryl isocyanate ([1,3] system)
 - Bench stable white solids

- Barton Radical Decarboxylative Hydroxylation
 - \(\alpha \)-hydroboronate formation via thiohydroxamate ester
 - Subsequent oxidation to acylboronates ([1,1] system)
[1,3] Amphoteric System:
\(\alpha \)-Boryl Isocyanates

- \(\alpha \)-Boryl isocyanate
 - Ureas
 - Manipulation of MIDA group to boronic acid derivatives
 - Carbamates
 - Boropeptides
Combined $[1,3]/[1,1]$ Amphoteric System: α-Boryl Isocyanides

- α-Boryl Isocyanide
 - HSiCl$_3$ mediated deoxygenation
 - Combination of two amphoteric systems: $[1,3]$ & $[1,1]$ system

- Other Reactivities
 - Sulfurization to isothiocyanates
 - Reaction with amines (thiourea)
 - Tetrazole formation
Combined [1,3]/[1,1] Amphoteric System: \(\alpha\)-Boryl Isocyanides

- Multicomponent reaction (U4CR/P3CR)
 - Ugi reaction
 - Passerini reaction
 - These borocyclic peptide derivative exhibit comparable results and selectivities to bortezomib

[1,1] Amphoteric System: Acylboronates

• Thiazole Synthesis
 – \(\alpha \)-Bromination followed by reaction with thioamides/thioureas
 – Carbon-Boron bond intact

\[
\begin{align*}
\text{MeN} & \quad \text{Br}_2 \\
\text{R}^1 & \quad \text{dioxane/DCM (1:1 v/v)}
\end{align*}
\]

\[
\begin{align*}
\text{MeN} & \quad \text{Br} \\
\text{R}^1 & \quad \text{DMF}
\end{align*}
\]

• Quinoxaline Synthesis
 – Silyl enol ether formation
 – Rubottom oxidation
 – \(\alpha \)-borylated diketones
 – Subsequent DM oxidation

Summary

• The syntheses of compounds with [1,3]-, [1,2]-, and [1,1]-amphoteric systems and its synthetic utility in various reactions have been studied by Yudin and coworkers.

• Amphoteric compounds:
 – are mostly bench stable solids
 – show orthogonality of nucleophilic and electrophilic components.

• Aziridine aldehydes:
 – exists in dimers via self-association
 – benefit high stereoselectivity from having dimeric nature

• α-Boryl aldehydes:
 – Isolable amphoteric metalloids
 – Retention of the C-B bond
Useful References