High-Temperature Molecular Magnets Based on Cyanovanadate Building Blocks: Spontaneous Magnetization at 230 K

William R. Entley and Gregory S. Girolami*

The molecule-based magnetic materials Cs₂Mn₂[V(CN)₆] (1) and (Et₄N)₀.₅Mn₁.₂₅[V(CN)₅]-2H₂O (2) (where Et is ethyl) were prepared by the addition of manganese(II) triflate to aqueous solutions of the hexacyanovanadate(II) ion at 0°C. Whereas 1 crystallizes in a face-centered cubic lattice, 2 crystallizes in a noncubic space group. The cesium salt (1) has features characteristic of a three-dimensional ferrimagnet with a Néel transition at 125 kelvin. The tetraethylammonium salt (2) also behaves as a three-dimensional ferrimagnet with a Néel temperature of 230 kelvin; only two other molecular magnets have higher magnetic ordering temperatures. Saturation magnetization measurements indicate that in both compounds the V(IV) and high-spin Mn(II) centers are antiferromagnetically coupled. Both 1 and 2 exhibit hysteresis loops characteristic of soft magnets below their magnetic phase-transition temperatures. The high magnetic ordering temperatures of these cyano-bridged solids confirm that the incorporation of early transition elements into the lattice promotes stronger magnetic coupling by enhancing the backbonding into the cyanide π* orbitals.

In the last few years, there has been considerable interest in the preparation and properties of "molecular magnets" (1–3). Although a wide variety of such materials is now known, most exhibit long-range cooperative magnetic behavior only when they are cooled to rather low temperatures, often well below 30 K (4–12). For example, the one-dimensional (1D) materials [Mn(C₅Me₅)₂] (TCNE) (Me = methyl) (7), [Mn(F₅benz)₂](nitMe) (10), and MnCu(pbaOH)•2H₂O (6) have magnetic ordering temperatures T_N of 8.8, 24, and...
able control over the nature and the magnitude of the local magnetic exchange interactions.

The magnetic properties of a number of Prussian blue analogs have been described (18, 20–23), and the nature of the exchange interactions has been discussed (24); the antiferromagnetic interactions, which are thought to propagate principally through the empty π* orbitals of the cyanide ligand, are generally dominant (18, 20, 21). Because T_N is directly related to the magnitude of the spin coupling between adjacent metal centers (25), it should be possible to increase T_N in Prussian blue analogs by increasing the extent of π-back-bonding into the cyanide π* orbitals. One way to accomplish this is to substitute into the structure metals that have high-energy t_{2g} orbitals. In particular, it might be possible to prepare solids with T_N near 300 K by substituting low-valent V or Ti centers into a cyanide-bridged 3D lattice, but to our knowledge no such materials have been reported. We describe herein the synthesis, characterization, and magnetic properties of V-containing analogs of Prussian blue; one of these solids exhibits spontaneous magnetization at 230 K. The cyanovanadate reagents we have used as molecular building blocks are the potassium and tetraethylammonium salts of the hexacyanovanadate(II) ion: $K[V(CN)]_6$ (26) and (NEt$_4$)$_2$ $[V(CN)]_6$ (Et = ethyl) (27).

Addition of Mn(OSO$_2$CF$_3$)$_2$CH$_2$CN$_2$ (28) to an aqueous solution of CsOSO$_2$CF$_3$ (28) and $K[V(CN)]_6$ under argon at 0°C yields an air-sensitive green solid (29) of stoichiometry $Cs_3Mn[3[V(CN)]_6]$ (1) (Fig. 1). The infrared (IR) spectrum of this material shows a strong v$_{CN}$ stretch at 2097 cm$^{-1}$ and a shoulder at 2062 cm$^{-1}$. The frequency of the former band is consistent with the presence of bridging cyanide groups that are C-bound to V^{III} and N-bound to MnII (19). The shoulder at 2062 cm$^{-1}$ suggests that there is some disorder in the cyanide positions (18, 22, 30); for example, some of the bridging cyanide ligands are C-bound to MnIII and N-bound to V^{III}. The powder x-ray diffraction (XRD) pattern of 1 is able to be indexed to a face-centered-cubic (fcc) lattice with $a = 10.66$ Å; no extraneous peaks are present in the XRD pattern. This information and the magnetic studies below show that the lattice of 1 consists principally of alternating V^{III} (t_{2g}) and MnII (t_{2g}, e_g) centers bridged by cyanide ligands; the Cs$^+$ cations occupy the cube “interiors” described by the cyanide-bridged lattice. The near-IR spectrum shows no inter小龙虾ence transfer band, which indicates that electron transfer between the V^{III} and MnII centers is not occurring.

The room-temperature value of χT is 6.2(3) cm$^{-1}$ K mol$^{-1}$ (where χ is the magnetic susceptibility and T is the temperature; numbers in parentheses are standard errors in the last digit); this value closely agrees with the value of 6.3 cm$^{-1}$ K mol$^{-1}$ calculated for a thermally random mixture of equal populations of $S = 5/2$ and $S = 3/2$ spin centers. As the sample is cooled, χT gradually decreases and reaches a minimum near 200 K (Fig. 2, inset); a fit of the data to the Curie-Weiss equation $\chi = C/(T - \theta)$ (where C is a constant) over the temperature range from 290 to 265 K yields a Weiss constant, θ, of -250 K. The minimum in the curve of χT versus T (4) and the negative Weiss constant indicate that the adjacent spin centers in 1 are antiferromagnetically coupled.

At lower temperatures, 1 becomes strongly magnetic, as shown by the rapid increase in the magnetization below 125 K (Fig. 2). Fitting the high-temperature reciprocal susceptibility of 1 to a hyperbola based on Néel’s theory (31) confirms that T_N is 125 K. We established the antiferromagnetic nature of the interaction between the adjacent V^{III} and MnII centers quantitatively by measuring the field dependence of the magnetization of 1 at 4.5 K (Fig. 3). The saturation magnetization at 70 K is 1.34(6) × 104 G cm$^{-3}$ mol$^{-1}$; this value is consistent with the calculated...
value of $1.12 \times 10^4 \text{ G cm}^{-3} \text{ mol}^{-1}$ expected for equal populations of antiferromagnetically coupled V^{II} and high-spin Mn^{II} centers (32) but inconsistent with the value of $4.47 \times 10^4 \text{ G cm}^{-3} \text{ mol}^{-1}$ expected for ferromagnetically coupled centers.

Treatment of $(\text{NEt}_4)_4[V(CN)_6]$ with Mn(OSO$_3$CF$_3$)$_2$(CH$_2$CN)$_2$ in the absence of Cs$^+$ triflate yields a yellow compound tentatively formulated on the basis of microanalytical data as (Et$_4$N)$_2$Mn$_{1.25}[V(CN)_6] \cdot 2\text{H}_2\text{O}$ (2) (29); the stoichiometry varies slightly depending on reaction conditions, and the possibility that the solid is a mixture of distinct species cannot be ruled out. Besides bands that are a result of the (NEt$_4$)$^+$ cation, the IR spectrum of 2 contains features attributable to the cyanide groups at 2094 and 2079 cm$^{-1}$ with a shoulder at 2066 cm$^{-1}$, and clearly shows that there are no terminal vanadyl species present. The frequencies of the v_{CN} stretching bands are characteristic of bridging cyanide ligands (19), but evidently several different cyanide environments are present in 2. There is no intercalation electron transfer band in the near-IR spectrum.

Unlike the behavior seen for 1, the curve of χT versus T for 2 exhibits no minimum as the sample is cooled from 350 K; instead, T_N gradually increases as the temperature decreases (Fig. 4, inset). Most interesting, however, is the T_N value of 230 K (corresponding to the sharp rise in the magnetization as the sample is cooled; see Fig. 4). Among reported molecular magnetic materials, only two exhibit higher T_N values: the vanadium-TCNE compound of Miller and co-workers (16) (T_N estimated to be ~400 K) and the cyanochrome $[\text{Cr}_6(\text{CN})_{12}] \cdot 10\text{H}_2\text{O}$ compound of Verdaguer and co-workers (18) ($T_N = 240$ K).

The lack of a minimum in the curve of χT versus T for 2 suggests at first glance that the V^{II} and Mn^{II} spin centers are ferromagnetically coupled, but this conclusion is contradicted by the saturation magnetization: The experimental value of $1.7(1) \times 10^4 \text{ G cm}^{-3} \text{ mol}^{-1}$ at 4.5 K (Fig. 3) differs significantly from the saturation magnetization of $5.17 \times 10^4 \text{ G cm}^{-3} \text{ mol}^{-1}$ calculated by assuming that the metal centers in 2 are ferromagnetically coupled but it agrees closely with the value of $1.81 \times 10^4 \text{ G cm}^{-3} \text{ mol}^{-1}$ calculated for antiferromagnetic coupling (32). The lack of a minimum in the curve of χT versus T for 2 probably means that the minimum lies above the 350 K limit of our data (this being near the temperature at which 2 begins to decompose). In other words, the antiferromagnetic interaction between the V^{II} and Mn^{II} centers is strong enough to depopulate states of high spin multiplicity even at 350 K, and χT continuously increases as the sample is cooled because short-range order keeps the uncompensated moments parallel to each other (9–11). The magnetic data for 2 are thus consistent with bulk ferrimagnetic behavior below its T_N of 230 K (33, 34).

The powder XRD pattern clearly shows that 2 is polycrystalline but that it does not adopt a fcc structure like 1. The non-cubic XRD pattern and the unusual ratio of CN^- to V both suggest that the structure of 2 is more complex than that of 1; further studies need to be undertaken to determine its 3D structure. Interestingly, Babel has shown that attempts to substitute cations larger than Cs$^+$ into the Prussian blue lattice usually give rise instead to lower dimensional structures with substantially decreased magnetic phase-transition temperatures (20). Even though the large (NEt$_4$)$^+$ cations evidently prevent the adoption of the cubic Prussian blue structure, the high value of T_N suggests that the structure of 2 still consists of a 3D array of interacting spin centers.

Both 1 and 2 exhibit hysteresis below their T_N values. For 2, the coercive field is nearly zero at 220 K, although the magnetization as a function of external field strength clearly exhibits an S-shaped curve characteristic of hysteretic behavior (Fig. 5). As the temperature is lowered, the coercive field of the material increases and reaches a limiting value of ~24 G below 50 K. The coercive field for 1 at 10 K is only slightly larger: ~100 G (35). The small values of the coercive fields for 1 and 2 lend support to our contention that the metal centers present in these solids are magnetically isotropic V^{II} and high-spin Mn^{II} ions. In contrast, Prussian blue analogs that contain magnetically anisotropic metal centers exhibit considerably larger coercive fields (5, 22).

The V-based Prussian blue analogs that we have prepared confirm our expectation that substitution of early transition metals into the lattice should lead to higher T_N values. It is especially instructive to compare the behavior of Cs$_2$Mn$_{10}[V^{II}(\text{CN})_6]$ (1) with that of two other isostructural species, CsMn$_{10}[\text{Cr}^{III}(\text{CN})_6]\cdot \text{H}_2\text{O} (20)$ and Mn$_{10}[\text{Mn}^{III}(\text{CN})_6]\cdot 2\text{H}_2\text{O} (21). All three compounds have d^5 Mn^{II} centers in the weak ligand-field sites (N_b coordination environments) and d^5 metal centers in the strong ligand-field sites (C_6 coordination environments); the principal difference is that the energies of the t_{2g} orbitals in the latter sites decrease as the metal changes from V^{II} to CrIII to MnIII. The relative magnetic ordering temperatures of 125, 90, and 49 K for Cs$_2$Mn$_{10}[V^{II}(\text{CN})_6]$, CsMn$_{10}[\text{Cr}^{III}(\text{CN})_6]\cdot \text{H}_2\text{O}$, and Mn$_{10}[\text{Mn}^{III}(\text{CN})_6]\cdot 2\text{H}_2\text{O}$, respectively, clearly show that incorporation of transition metals with higher energy t_{2g} orbitals into the strong ligand-field sites leads to higher magnetic phase-transition temperatures. As the back-bonding with the cyanide π^* orbitals becomes more effective, the coupling between the adjacent spin centers increases. These two V-based molecular magnets represent an important step in the design of molecular magnets with high T_N. Through judicious choice of cations and metal centers, T_N values above 300 K should be possible.

![Fig. 4. Temperature dependence of the magnetization M per formula unit of (Et$_4$N)$_2$Mn$_{1.25}[V(CN)_6] \cdot 2\text{H}_2\text{O}$ (2) in an applied magnetic field H of 50 G. The inset shows the gradual increase in χT as the sample is cooled below 350 K.](image-url)
REFERENCES AND NOTES

2. O. Kahn, Molecular Magnetism (VCH, New York, 1993).
13. Abbreviations used are as follows: Me = methyl; TCNE = tetracyanoethylenide; F-benz = pentfluoro- orthobenzoate; niitMe = 2-nitril-propyl-tetramethyl-4,5,5-di-hydro-1H-imidazoyl-1-oxo-3-x; pbaOH = 2-hydroxy-1,3-propanediylbis(oxamato).
24. For a Prussian blue structure, magnetic orbitals on adjacent metal centers M and M′ will contribute to the superexchange as follows: e_g-e_g and $t_{2g}-t_{2g}$ combinations (if present) have nonzero overlap and give rise to antiferromagnetic contributions; e_g-t_{2g} combinations (if present) have zero overlap and give rise to ferromagnetic contributions.
26. We prepared $K[V(CN)_{6}]$ by adding a solution of KCN (2.56 g, 39.4 mmol) in water (60 ml) to a solution of $V(H_2O)_3(OSO_2CF_2)_2$ (36) (1.50 g, 3.28 mmol) in water (25 ml) under argon. The dark brown solution was brought to reflux for 30 min and then was taken to dryness under vacuum. The resulting yellow solid was washed with methanol (30 ml) and extracted into an aqueous 3.5 M KCN solution (70 ml). The orange-yellow extract was filtered, reduced in volume to saturation (~25 ml), and cooled to 5°C to afford orange needles of $K[V(CN)_6]$. The yield was 0.66 g (55%).
27. We prepared $[V(CN)_6]Cl_2$ by adding a solution of $[V(CN)_6]Cl_2$ (1.37 g, 8.75 mmol) in acetonitrile (30 ml) to a solution of $V(H_2O)_3(OSO_2CF_2)_2$ (36) (0.50 g, 1.1 mmol) in acetonitrile (26 ml) under argon. The dark brown solution was brought to reflux for 30 min, filtered, reduced in volume to saturation (~20 ml), and cooled to ~20°C to afford a brown solid. The crude product was collected by filtration and dissolved in a solution of $[V(CN)_6]Cl_2$ (1.12 g, 72 mmol) in acetonitrile (60 ml). The resulting red-brown solution was brought to reflux for 5 min, filtered, concentrated to ~20 ml, and cooled to ~20°C to afford $[V(CN)_6]Cl_2$ as a brown solid. The yield was 0.17 g (21%).
29. Calculated composition for $C_6H_5C_6H_5MnV$ (1): C, 13.6%; N, 15.9%; Mn, 10.4%; V, 9.65%. Found: C, 13.7%; N, 16.1%; Mn, 11.6%; V, 10.2%. Calculated composition for $C_6H_5C_6H_5MnV$ (2): C, 30.8%; H, 4.02%; N, 21.99%; Mn, 19.6%; V, 14.5%. Found: C, 30.09%; H, 4.19%; N, 18.2%; Mn, 20.8%; V, 14.8%. Discussions of alternative formulations for 2 such as $[Et_2N]_{1.25}[V(CN)_6](OH)H_2O$ await additional data.
32. The saturation magnetization was calculated from the formula $M = g_\mu_BN$, where μ_B is the Bohr magneton, N_0 is Avogadro’s number, and S is the net spin per formula unit. The Landé g factor was assumed to be equal to 2 for both metal centers.
33. Further support for a large local antiferromagnetic interaction between the V(II) and Mn(II) spin centers in 2 comes from the χ_T value of 6.1(2) cm$^{-1}$ K$^{-1}$ at 350 K, which is smaller than the value of 7.4 cm$^{-1}$ K$^{-1}$ calculated for a thermally random array of Mn(II) ($S = 5/2$) and V(II) ($S = 3/2$) spin centers in a 1.25 to 1 ratio.
34. In contrast, the ferrimagnetic Cr(III)-based Prussian blue analogs $[Cr_2(CN)_6]Cl_2$·H_2O and $Cs_6[V_2(CN)_6]$·H_2O, which have T_N of 240 and 190 K respectively, exhibit minima in their curves χ_T versus T below 300 K (18). The absence of such a minimum for 2 suggests that its exchange interactions are stronger than in these cyano-chromates.
35. The remnant magnetizations for 1 and 2 are $<1.95 \times 10^{-3}$ G cm3 mol$^{-1}$ at 10 K and $<1.39 \times 10^{-2}$ G cm3 mol$^{-1}$ at 50 K, respectively.
37. This work was supported by the Department of Energy. The work of W.R.E. was supported by a fellowship from the Department of Chemistry. We thank M. Rosenblatt, D. White, and K. S. Suslick for assistance with Fig. 1.

4 October 1994; accepted 30 December 1994