Protonation of the osmium(IV) hydrides (C₅Me₅)OsH₂L with HBF₄ in diethyl ether afforded the cationic dihydrogen complexes [(C₅Me₅)OsH₂L][HBF₄], where L is PPh₃ or AsPh₃. A single-crystal neutron diffraction study of 1 reveals that the H–H distance is 1.014(11) Å.

Since their discovery, molecular dihydrogen complexes have generated considerable interest because they represent a midway point along the reaction coordinate that leads to the oxidative addition of dihydrogen by transition-metal centers. The H–H bond distance is a measure of the extent to which the H bond is lengthened during oxidative addition. The H–H bond distance in complexes of general stoichiometry (C₅Me₅)Os(H₂)L₄(BF₄)₂ is about 0.8 Å longer than the normal H–H bond distance of 0.75 Å.

A few dihydrogen ligands have been 'elongated' H–H bond distances of approximately 1.0 to 1.4 Å that constitute an intermediate between the classical and non-classical hydrogen atom sites. These complexes are known as 'tetrahydrides'.

Protonation of the previously reported osmium(IV) trihydride (C₅Me₅)OsH₂(PPh₃)₂ with HBF₄·Et₂O in diethyl ether affords a white precipitate of stoichiometry (C₅Me₅)OsH₂(PPh₃)₂[BF₄]₂. This complex is isomorphous with the analogous triphenylarsine compound [(C₅Me₅)OsH₂(PAsPh₃)](BF₄)₂. In contrast, attempts to prepare a ruthenium analogue, [(C₅Me₅)RuH₂(PPh₃)](BF₄)₂, have been unsuccessful, evidently because this complex is unstable toward loss of H₂.

An X-ray crystallographic study of complex 1 conducted at 198 K strongly suggested that it adopts a four-legged piano stool geometry in which the four legs are described by the phosphine ligand, a single classical dihydrogen ligand, and a non-classical dihydrogen ligand. The phosphine is 'trans' to the dihydrogen ligand and the H–H distance is 0.02 to 0.1 Å. The metric parameters of the dihydrogen ligand deduced from X-ray data are, however, likely to have large errors.

† Dedicated to the memory of Geoffrey Wilkinson, whose work will long stand as a landmark and an inspiration.

‡ Complex 1 (Found: C, 46.09; H, 0.50; P, 4.27. Calc: C, 46.8; H, 5.05; P, 4.56%). IR (Nujol, cm⁻¹): 2108 cm⁻¹ (νOs–H); 1063 cm⁻¹ (νAs–H). NMR (CDCl₃, 22 °C): 6.75 (m, o–CH and m–CH), 7.3 (m, p–CH), 2.13 (s, C₅Me₅), −9.88 (s, Os–H).

The neutron diffraction data clearly reveal the presence of a dihydrogen ligand trans to the phosphine (Fig. 1). The H–H distance of 1.041(11) Å shows that the dihydrogen ligand is of the 'elongated' variety. The value of 1.014 Å is not corrected for librational motion of the H₂ ligand. Corrections of this type lengthen the H–H bond by ca. 0.02 to 0.1 Å. In contrast to the X-ray results, the dihedral angle between the Os–H₂ and P–Os–C₅ planes refined to a chemically reasonable value of 8.7°. The angle between the mutually 'trans' terminal hydrides [H(1)–Os–H(3)] of 132.6(5)° is considerably larger than the corresponding 119(2)° angle measured for the neutral complex (C₅Me₅)OsH₂(PPh₃)₂ by X-ray diffraction. This difference signals a change in the hybridization of the metal–ligand bonding orbitals upon protonation of the metal center.

The room-temperature ¹H NMR spectrum of complex 1 features a doublet at δ = 9.61 [JₚH(ave) = 14.2 Hz], the four osmium-bound hydrogen atoms; thus, exchange of the classical and non-classical hydrogen atom sites is fast on the NMR time-scale at 25 °C. The room-temperature ¹H NMR spectrum of 2 is similar except that the Os–H resonance appears as a singlet at δ = 9.88. For both compounds, the hydrogen resonance remains sharp down to approximately −100 °C, at which point it begins to broaden. At −140 °C (in D₂O), the hydrogen resonance of 1 remains a broad singlet, but the resonance of 2 decoalesces to two broad equal-intensity features separated by 1.0 ppm. The activation free energy for the dihydrogen-hydride exchange process is 2 ± 0.6 kcal mol⁻¹.

A detailed insight into the solution structure can be obtained from the NMR spectra of partially deuterated isopolys. Approximately 2.5 of the 4 hydrogen atoms are deuterated upon stirring a CH₂Cl₂ solution of 1 under 2 atm of D₂ for 24 h. A ¹H NMR spectrum of the partially deuterated material at 25 °C shows a doublet [JₚH(ave) = 14.7 Hz] of multiplets; the multiplet splitting gives JₚH(ave) = 3.6 Hz. These coupling constants and order to establish more definitively the presence of a molecular dihydrogen ligand, time-of-flight neutron diffraction data were collected from a 4 mm³ single crystal of 1.

The neutron diffraction data clearly reveal the presence of a dihydrogen ligand trans to the phosphine (Fig. 1). The H–H distance of 1.041(11) Å shows that the dihydrogen ligand is of the 'elongated' variety. The value of 1.014 Å is not corrected for librational motion of the H₂ ligand. Corrections of this type lengthen the H–H bond by ca. 0.02 to 0.1 Å. In contrast to the X-ray results, the dihedral angle between the Os–H₂ and P–Os–C₅ planes refined to a chemically reasonable value of 8.7°. The angle between the mutually 'trans' terminal hydrides [H(1)–Os–H(3)] of 132.6(5)° is considerably larger than the corresponding 119(2)° angle measured for the neutral complex (C₅Me₅)OsH₂(PPh₃)₂ by X-ray diffraction. This difference signals a change in the hybridization of the metal–ligand bonding orbitals upon protonation of the metal center.

The room-temperature ¹H NMR spectrum of complex 1 features a doublet at δ = 9.61 [JₚH(ave) = 14.2 Hz], the four osmium-bound hydrogen atoms; thus, exchange of the classical and non-classical hydrogen atom sites is fast on the NMR time-scale at 25 °C. The room-temperature ¹H NMR spectrum of 2 is similar except that the Os–H resonance appears as a singlet at δ = 9.88. For both compounds, the hydrogen resonance remains sharp down to approximately −100 °C, at which point it begins to broaden. At −140 °C (in D₂O), the hydrogen resonance of 1 remains a broad singlet, but the resonance of 2 decoalesces to two broad equal-intensity features separated by 1.0 ppm. The activation free energy for the dihydrogen-hydride exchange process is 2 ± 0.6 kcal mol⁻¹.

A detailed insight into the solution structure can be obtained from the NMR spectra of partially deuterated isopolys. Approximately 2.5 of the 4 hydrogen atoms are deuterated upon stirring a CH₂Cl₂ solution of 1 under 2 atm of D₂ for 24 h. A ¹H NMR spectrum of the partially deuterated material at 25 °C shows a doublet [JₚH(ave) = 14.7 Hz] of multiplets; the multiplet splitting gives JₚH(ave) = 3.6 Hz. These coupling constants and
reaches a minimum of 99 ms at structure of temperature, the exchange between the Os is in the fast exchange limit, and thus the observed relaxation min) distances (Å) and angles (°) are shown for the Os-H ligands while spheres of arbitrary size are shown for all other atoms. Selected bond distances (Å) and angles (°) (all taken from the neutron study except the first two): Os-P 2.331(4), Os-C 2.251(6), H(2)-H(4) 1.014(11), Os-O(1) 1.654(9), Os-O(1) 1.631(9), Os-O(4) 1.680(9), H(2)-Os-H(4) 35.4(4), H(2)-Os-H(3) 68.0(5), H(2)-Os-H(1) 71.2(5), H(1)-Os-H(3) 122.6(5), H(3)-Os-H(4) 84.3(5), H(1)-Os-H(4) 76.2(5), H(1)-Os-P 77.3(3), H(2)-Os-P 83.0(4), H(3)-Os-P 74.9(3), H(4)-Os-P 117.9(4)

These estimated relaxation rates lead to a value of 12.96 s−1 for the Os-H ligands. If we assume that the geminal 2J(H-H) couplings are all between 0 and 1 Hz,3 then the intrinsic 2J(H-H) couplings within the bound HD ligand is between 20.6 and 21.6 Hz. [The thermodynamic site preferences (i.e., deuterium in the dihydrogen vs. hydride sites) are small as shown by the invariance of 2J(H-H) to the extent of deuteration.] These values, when substituted into Morris's empirical equation 4

\[
\Delta \omega_{nm} = -0.0167 \times 2J(H-H) + 1.42 \times 10^{-6} \text{Hz} \times \text{distances (Å) of Os-H}
\]

A value of 1.06 to 1.08 Å is calculated. This calculated distance is in good agreement with that derived from the neutron diffraction data, especially after correction for librational effects, and we conclude that the structure of 1 in solution is similar to that seen in the solid state.

We have also carried out variable-temperature 1H NMR studies of the spin-lattice relaxation time of deuteriated samples of 1. At 500 MHz in CD2Cl2, the 2J(H-H) of the Os-H resonance reaches a minimum of 99 ms at ~70 °C (Su P 57272). At this temperature, the exchange is fast in the Os-H and Os-H2 sites is the fast exchange limit, and thus the observed relaxation time is an average given by the expression 2J(H-H) + R(c, min) + R(n, min), where R(c, min) and R(n, min) are the relaxation rates (R = 1/T1) for the classical and non-classical hydrogen sites at ~70 °C. By using Halpern's method 44 to sum dipole-dipole relaxation rates calculated from the interatomic distances determined crystallographically, we can calculate that R(c, min) is approximately 4.14 s−1 and that the relaxation rates of the hydrogen atoms in the H2 ligand (excluding the dipole-dipole interaction within the H2 ligand itself) are 3.94 s−1 for hydrogen atom H(2) and 2.25 s−1 for hydrogen atom H(4). These estimated relaxation rates lead to a value of 12.96 s−1 for the relaxation rate due just to the dipole-dipole interaction within the H2 ligand [i.e., T1(n, min) = 77 ms]. If we assume that the dihydrogen ligand rotation rate is fast compared with the molecular tumbling rate, then from the expression 45

\[
\Delta \omega_{nm} = \frac{5.81}{\sqrt{T_1(n, min)/2}} \times 10^{-6} \text{Hz}.
\]

The value agrees with the distance deduced from 2J(H-H) and from the neutron diffraction data.

We are continuing our studies of this new class of dihydrogen complexes.

Aknowledgements

We wish to acknowledge the support of the U.S. Department of Energy under Grant No. DE-FG02-91ER45439. The work at Argonne National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under Contract No. W-31-109-ENG-38.

References

Received 14th July 1997; Communication 7/04997H