U of I

So Hirata

Marvin T. Schmidt Professor
Department of Chemistry

Noyes Laboratory 355F
600 S. Mathews Ave.
Urbana, IL 61801-3364

Tel: (217) 244-0629
Fax: (217) 244-3186
Email: sohirata@illinois.edu

Google Scholar

Refereed Articles (reviews, perspectives, feature articles, etc. in bold face)

    [2024]

  1. S. Hirata, I. Grabowski, J. V. Ortiz, and R. J. Bartlett,
    Submitted (2024), arXiv:2312.03157 (16 pages),
    “Nonconvergence of the Feynman-Dyson diagrammatic perturbation expansion of propagators.”

  2. [2023]

  3. X. Qin and S. Hirata,
    The Journal of Chemical Physics 159, 084114 (2023) (52 pages), arXiv:2305.03137,
    “Finite-temperature many-body perturbation theory for anharmonic vibrations: Recursions, algebraic reduction, second-quantized reduction, diagrammatic rules, linked-diagram theorem, finite-temperature self-consistent field, and general-order algorithm.”
  4. S. Hirata, Y. Shigeta, S. S. Xantheas, and R. J. Bartlett,
    The Journal of Physical Chemistry B 127, 3556-3583 (2023) [MQM 2022 Special Issue], arXiv:2212.07964 (28 pages),
    “Helical organic and inorganic polymers.”

  5. [2022]

  6. S. Hirata,
    Molecular Physics 121(9-11), e2086500 (2022) (13 pages) [Peter Gill Special Issue], arXiv:2204.13769,
    “Nonvanishing quadrature derivatives in the analytical gradients of density functional energies in crystals and helices.”
  7. J. C. Cruz, J. Garza, T. Yanai, and S. Hirata,
    The Journal of Chemical Physics 156, 224102 (2022) (9 pages), arXiv:2203.05632, Data
    “Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method.”
  8. S. Hirata,
    Chemical Physics Letters 800, 139668 (2022) (3 pages) [Editors' Choice Article], arXiv:2201.04839,
    “General solution to the Kohn-Luttinger nonconvergence problem.”

  9. [2021]

  10. S. Hirata,
    The Journal of Chemical Physics 155, 094106 (2021) (30 pages), arXiv:2106.10747,
    “Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, and grand canonical and canonical ensembles.”
  11. A. E. Doran, D. L. Qiu, and S. Hirata,
    The Journal of Physical Chemistry A 125, 7344-7351 (2021) [125 Years of The Journal of Physical Chemistry] [Selected as part of Virtual Issue “A Venue for Advances in Experimental and Theoretical Methods in Physical Chemistry” with cover art],
    “Monte Carlo MP2-F12 for noncovalent interactions: The C60 dimer.”
  12. X. Qin and S. Hirata,
    Molecular Physics 119(21-22), e1949503 (2021) (9 pages) [John Stanton Special Issue: Theory Meets Experiment],
    “Finite-temperature vibrational full configuration interaction.”
  13. A. E. Doran and S. Hirata,
    The Journal of Chemical Physics 154, 134114 (2021) (15 pages),
    “Stochastic evaluation of fourth-order many-body perturbation energies.”
  14. S. Hirata,
    Physical Review A 103, 012223 (2021) (14 pages), arXiv:2006.00078,
    “Low-temperature breakdown of many-body perturbation theory for thermodynamics.”

  15. [2020]

  16. X. Qin and S. Hirata,
    The Journal of Physical Chemistry B 124, 10477-10485 (2020) [Yoshitaka Tanimura Festschrift],
    “Anharmonic phonon dispersion in polyethylene.”
  17. A. E. Doran and S. Hirata,
    The Journal of Chemical Physics 153, 094108 (2020) (9 pages) [Frontiers of Stochastic Electronic Structure Calculations Special Issue],
    “Convergence acceleration of Monte Carlo many-body perturbation methods by using many control variates.”
  18. A. E. Doran and S. Hirata,
    The Journal of Chemical Physics 153, 104112 (2020) (9 pages) [Frontiers of Stochastic Electronic Structure Calculations Special Issue] [JCP Editors' Pick],
    “Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling.”
  19. S. Hirata and P. K. Jha,
    The Journal of Chemical Physics 153, 014103 (2020) (13 pages), arXiv:2003.05540,
    “Finite-temperature many-body perturbation theory in the grand canonical ensemble.”
  20. E. Aprà, et al.,
    The Journal of Chemical Physics 152, 184102 (2020) (26 pages),
    “NWChem: Past, present, and future.”
  21. P. K. Jha and S. Hirata,
    Physical Review E 101, 022106 (2020) (8 pages), arXiv:1910.07628,
    “Finite-temperature many-body perturbation theory in the canonical ensemble.”
  22. A. A. Kunitsa and S. Hirata,
    Physical Review E 101, 013311 (2020) (8 pages), arXiv:1811.03000,
    “Grid-based diffusion Monte Carlo for fermions without the fixed-node approximation.”

  23. [2019]

  24. A. E. Doran and S. Hirata,
    Journal of Chemical Theory and Computation 15, 6097-6110 (2019),
    “Monte Carlo second- and third-order many-body Green's function methods with frequency-dependent, nondiagonal self-energy”
  25. S. Hirata and P. K. Jha,
    Annual Reports in Computational Chemistry 15, 17-37 (2019), arXiv:1812.07088,
    “Converging finite-temperature many-body perturbation theory in the grand canonical ensemble that conserves the average number of electrons.”
  26. P. K. Jha and S. Hirata,
    Annual Reports in Computational Chemistry 15, 3-15 (2019), arXiv:1809.10316,
    “Numerical evidence invalidating finite-temperature many-body perturbation theory.”
  27. P. Rai, K. Sargsyan, H. Najm, and S. Hirata,
    Journal of Mathematical Chemistry 57, 1732-1754 (2019),
    “Sparse low rank approximation of potential energy surfaces with applications in estimation of anharmonic zero point energies and frequencies.”

  28. [2018]

  29. C. M. Johnson, A. E. Doran, S. L. Ten-no, and S. Hirata,
    The Journal of Chemical Physics 149, 174112 (2018) (9 pages),
    “Monte Carlo explicitly correlated many-body Green's function theory.”
  30. M. Hayami, J. Seino, Y. Nakajima, M. Nakano, Y. Ikabata, T. Yoshikawa, T. Oyama, K. Hiraga, S. Hirata, and H. Nakai,
    Journal of Computational Chemistry 39, 2333-2344 (2018),
    “RAQET: Large-scale two-component relativistic quantum chemistry program package.”
  31. J. A. Faucheaux, M. Nooijen, and S. Hirata,
    The Journal of Chemical Physics 148, 054104 (2018) (24 pages),
    “Similarity-transformed equation-of-motion vibrational coupled-cluster theory.”

  32. [2017]

  33. M. Nakano, T. Yoshikawa, S. Hirata, J. Seino, and H. Nakai,
    Journal of Computational Chemistry 38, 2520-2527 (2017),
    “Computerized implementation of higher-order electron-correlation methods and their linear-scaling divide-and-conquer extensions.”
  34. S. Hirata, A. E. Doran, P. J. Knowles, and J. V. Ortiz,
    The Journal of Chemical Physics 147, 044108 (2017) (31 pages),
    “One-particle many-body Green's function theory: Algebraic recursive definitions, linked-diagram theorem, irreducible-diagram theorem, and general-order algorithms.”
  35. C. M. Johnson, S. Hirata, and S. Ten-no,
    Chemical Physics Letters 683, 247-252 (2017) [Ahmed Zewail Commemoration Issue],
    “Explicit correlation factors.”
  36. A. Grüneis, S. Hirata, Y.-y. Ohnishi, and S. Ten-no,
    The Journal of Chemical Physics 146, 080901 (2017) (12 pages) [an invited Perspective],
    “Explicitly correlated electronic structure theory for complex systems.”
  37. P. Rai, K. Sargsyan, H. Najm, M. R. Hermes, and S. Hirata,
    Molecular Physics 115, 2120-2134 (2017) [MQM 2016 Special Issue],
    “Low-rank canonical-tensor decomposition of potential energy surfaces: Application to grid-based diagrammatic vibrational Green's function theory.”

  38. [2016]

  39. C. M. Johnson, A. E. Doran, J. Zhang, E. F. Valeev, and S. Hirata,
    The Journal of Chemical Physics 145, 154115 (2016) (19 pages),
    “Monte Carlo explicitly correlated second-order many-body perturbation theory.”
  40. A. E. Doran and S. Hirata,
    Journal of Chemical Theory and Computation 12, 4821-4832 (2016),
    “Monte Carlo MP2 on many graphical processing units.”
  41. S. Hirata, T. Shiozaki, C. M. Johnson, and J. D. Talman,
    Molecular Physics 115, 510-525 (2017) [Sanibel Symposium Special Issue],
    “Numerical solution of the Sinanoğlu equation using a multicentre radial-angular grid.”
  42. M. A. Salim, S. Y. Willow, and S. Hirata,
    The Journal of Chemical Physics 144, 204503 (2016) (12 pages) [JCP Editors' Pick],
    “Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization.”
  43. S. Y. Willow, X. C. Zeng, S. S. Xantheas, K. S. Kim, and S. Hirata,
    Journal of Physical Chemistry Letters 7, 680-684 (2016),
    “Why is MP2-water “cooler” and “denser” than DFT-water?”

  44. [2015]

  45. J. A. Faucheaux and S. Hirata,
    The Journal of Chemical Physics 143, 134105 (2015) (21 pages),
    “Higher-order diagrammatic vibrational coupled-cluster theory.”
  46. S. Y. Willow, M. A. Salim, K. S. Kim, and S. Hirata,
    Scientific Reports 5, 14358 (2015) (14 pages),
    Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.”
  47. T. Yamada and S. Hirata,
    The Journal of Chemical Physics 143, 114112 (2015) (7 pages),
    “Singlet and triplet instability theorems.”
  48. M. R. Hermes and S. Hirata,
    The Journal of Chemical Physics 143, 102818 (2015) (11 pages) [Special Topic Issue on “Advanced Electronic Structure Methods for Solids and Surfaces”],
    “Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.”
  49. S. Hirata, M. R. Hermes, J. Simons, and J. V. Ortiz,
    Journal of Chemical Theory and Computation 11, 1595-1606 (2015),
    “General-order many-body Green's function method.”
  50. M. R. Hermes and S. Hirata,
    International Reviews in Physical Chemistry 34, 71-97 (2015),
    “Diagrammatic theories of anharmonic molecular vibrations.”
  51. J. Li, O. Sode, and S. Hirata,
    Journal of Chemical Theory and Computation 11, 224-229 (2015),
    “Second-order many-body perturbation study on thermal expansion of solid carbon dioxide.”

  52. [2014]

  53. M. R. Hermes and S. Hirata,
    The Journal of Chemical Physics 141, 244111 (2014) (11 pages); Erratum 143, 129904 (2015) (2 pages),
    “Stochastic algorithm for size-extensive vibrational self-consistent field methods on fully anharmonic potential energy surfaces.”
  54. S. Y. Willow, K. S. Kim, and S. Hirata,
    Physical Review B (Rapid Communications) 90, 201110(R) (2014) (5 pages),
    “Brueckner-Goldstone quantum Monte Carlo for correlation energies and quasiparticle energy bands of one-dimensional solids.”
  55. S. Hirata and M. R. Hermes,
    The Journal of Chemical Physics 141, 184111 (2014) (7 pages),
    “Normal-ordered second-quantized Hamlitonian for molecular vibrations.”
  56. M. R. Hermes and S. Hirata,
    The Journal of Chemical Physics 141, 084105 (2014) (17 pages); Erratum 143, 129903 (2015) (2 pages),
    “Stochastic many-body perturbation theory for anharmonic molecular vibrations.”
  57. S. Hirata, O. Sode, M. Keçeli, K. Yagi, and J. Li,
    The Journal of Chemical Physics 140, 177102 (2014) (2 pages),
    Response to “Comment on ‘Fermi resonance in solid CO2 under pressure.’”
  58. K. Gilliard, O. Sode, and S. Hirata,
    The Journal of Chemical Physics 140, 174507 (2014) (9 pages),
    “Second-order many-body perturbation and coupled-cluster singles and doubles study of ice VIII.”
  59. S. Hirata, K. Gilliard, X. He, J. Li, and O. Sode,
    Accounts of Chemical Research 47, 2721-2730 (2014),
    “Ab initio molecular crystal structures, spectra, and phase diagrams.”
  60. Z. Kou and S. Hirata,
    Theoretical Chemistry Accounts 133, 1487 (2014) (9 pages) [Isaiah Shavitt Special Issue],
    “Finite-temperature full configuration interaction.”
  61. S. Hirata, X. He, M. R. Hermes, and S. Y. Willow,
    The Journal of Physical Chemistry A 118, 655-672 (2014) [an invited Feature Article],
    “Second-order many-body perturbation theory: An eternal frontier.”
  62. S. Hirata and I. Grabowski,
    Theoretical Chemistry Accounts 133, 1440 (2014) (9 pages) [Thom Dunning Special Issue],
    “On the mutual exclusion of variationality and size consistency.”
  63. S. Y. Willow, J. Zhang, E. F. Valeev, and S. Hirata,
    The Journal of Chemical Physics (Communications) 140, 031101 (2014) (4 pages),
    “Stochastic evaluation of explicitly correlated second-order many-body perturbation energy.”
  64. X. He, S. Ryu, and S. Hirata,
    The Journal of Chemical Physics 140, 024702 (2014) (7 pages),,
    “Finite-temperature second-order many-body perturbation and Hartree-Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers.”
  65. S. Y. Willow and S. Hirata,
    The Journal of Chemical Physics 140, 024111 (2014) (7 pages),
    “Stochastic, real-space, imaginary-time evaluation of third-order Feynman-Goldstone diagrams.”

  66. [2013]

  67. T. Yamada, R. Brewster, and S. Hirata,
    The Journal of Chemical Physics 139, 184107 (2013) (13 pages); Erratum 140, 249902 (2014) (1 page),
    “Asymptotic expansion of two-electron integrals and its application to Coulomb and exchange lattice sums in metallic, semimetallic, and nonmetallic crystals.”
  68. J. Li, O. Sode, G. A. Voth, and S. Hirata,
    Nature Communications 4, 2647 (2013) (7 pages); Corrigendum 6, 8907 (2015) (1 page),
    “A solid-solid phase transition in carbon dioxide at high pressures and intermediate temperatures.”
  69. S. Y. Willow, M. R. Hermes, K. S. Kim, and S. Hirata,
    Journal of Chemical Theory and Computation 9, 4396-4402 (2013),
    “Convergence acceleration of parallel Monte Carlo second-order many-body perturbation calculations using redundant walkers.”
  70. M. R. Hermes and S. Hirata,
    The Journal of Chemical Physics 139, 034111 (2013) (21 pages),
    “Second-order many-body perturbation expansions of vibrational Dyson self-energies.”
  71. S. Hirata and X. He,
    The Journal of Chemical Physics 138, 204112 (2013) (13 pages),
    “On the Kohn-Luttinger conundrum.”
  72. S. Y. Willow, K. S. Kim, and S. Hirata,
    The Journal of Chemical Physics 138, 164111 (2013) (5 pages),
    “Stochastic evaluation of second-order Dyson self-energies.”
  73. M. R. Hermes and S. Hirata,
    The Journal of Physical Chemistry A 117, 7179−7189 (2013) [Joel M. Bowman Festschrift],
    “First-order Dyson coordinates and geometry.”
  74. O. Sode, M. Keçeli, K. Yagi, and S. Hirata,
    The Journal of Chemical Physics 138, 074501 (2013) (7 pages),
    “Fermi resonance in solid CO2 under pressure.”

  75. [2012]

  76. S. Hirata, M. Keçeli, Y.-Y. Ohnishi, O. Sode, and K. Yagi,
    Annual Reviews of Physical Chemistry 63, 131-153 (2012) [an invited Review],
    “Extensivity of energy and size-consistent electronic and vibrational structure methods for crystals.”
  77. A. Rajendran, T. Tsuchiya, S. Hirata, and T. Iordanov,
    The Journal of Physical Chemistry A 116, 12153–12162 (2012),
    “Predicting properties of organic optoelectronic materials: Asymptotically corrected density-functional study.”
  78. X. He, O. Sode, S. S. Xantheas, and S. Hirata,
    The Journal of Chemical Physics 137, 204505 (2012) (8 pages),
    “Second-order many-body perturbation study of ice Ih.”
  79. S. Y. Willow, K. S. Kim, and S. Hirata,
    The Journal of Chemical Physics 137, 204122 (2012) (5 pages),
    “Stochastic evaluation of second-order many-body perturbation energies.”
  80. K. Yagi, M. Keçeli, and S. Hirata,
    The Journal of Chemical Physics 137, 204118 (2012) (16 pages),
    “Optimized coordinates for anharmonic vibrational structure theories.”
  81. O. Sode and S. Hirata,
    The Journal of Chemical Physics 137, 174104 (2012) (7 pages),
    “Embedded fragmentation of vibrational energies.”
  82. R. D. Thomas, I. Kashperka, E. Vigren, W. Geppert, M. Hamberg, M. Larsson, M. af Ugglas, V. Zhaunerchyk, N. Indriolo, K. Yagi, S. Hirata, and B. J. McCall,
    Astrophysical Journal 758, 55 (2012),
    “Dissociative recombination of vibrationally cold CH3+ and interstellar implications.”
  83. M. R. Hermes, M. Keçeli, and S. Hirata,
    The Journal of Chemical Physics 136, 234109 (2012) (17 pages),
    “Size-extensive vibrational self-consistent field method with anharmonic geometry corrections.”
  84. G. J. O. Beran and S. Hirata,
    Physical Chemistry Chemical Physics 14, 7559-7561 (2012) [Guest Editorial in Special Issue on “Fragment and Localized Orbital Methods in Electronic Structure Theory”],
    “Fragment and localized orbital methods in electronic structure theory,” (Top 10 most read in May, 2012).
  85. O. Sode and S. Hirata,
    Physical Chemistry Chemical Physics 14, 7765-7779 (2012) [Special Issue on “Fragment and Localized Orbital Methods in Electronic Structure Theory”],
    “Second-order many-body perturbation study of solid hydrogen fluoride under pressure.”
  86. S. Hirata and Y.-Y. Ohnishi,
    Physical Chemistry Chemical Physics 14, 7800-7808 (2012) [Special Issue on “Fragment and Localized Orbital Methods in Electronic Structure Theory”],
    “Thermodynamic limit of the energy density in a crystal,” (Hot article)
  87. Y.-Y. Ohnishi and S. Hirata,
    Chemical Physics 401, 152-156 (2012) [Debashis Mukherjee Special Issue],
    “Charge-consistent redefinition of Fock integrals.”
  88. D. G. Patel, F. Feng, Y.-Y. Ohnishi, K. A. Abboud, S. Hirata, K. S. Schanze, and J. R. Reynolds,
    Journal of the American Chemical Society 134, 2599-2612 (2012),
    “It takes more than an imine: The role of the central atom on the electron accepting ability of benzotriazole and benzothiadiazole oligomers.”
  89. S. Hirata,
    Theoretical Chemistry Accounts 131, 1071 (2012) (4 pages) [an introductory article in the 50th Anniversary Issue],
    “Electronic structure theory: Present and future challenges.”

  90. [2011]

  91. M. Keçeli and S. Hirata,
    The Journal of Chemical Physics 135, 134108 (2011) (11 pages),
    “Size-extensive vibrational self-consistent field method.”
  92. Y.-Y. Ohnishi and S. Hirata,
    The Journal of Chemical Physics 135, 094108 (2011) (10 pages),
    “Hybrid coupled-cluster and perturbation method for extended systems of one-dimensional periodicity.”
  93. S. Hirata,
    Theoretical Chemistry Accounts 129, 727-746 (2011) [an invited Feature Article],
    “Thermodynamic limit and size-consistent design.”
  94. D. G. Patel, Y.-Y. Ohnishi, Y. Yang, S.-H. Eom, R. T. Farley, K. R. Graham, J. Xue, S. Hirata, K. S. Schanze, and J. R. Reynolds,
    Journal of Polymer Science Part B: Polymer Physics 49 557-565 (2011),
    “Conjugated polymers for pure UV light emission: Poly(meta-phenylenes).”

  95. [2010]

  96. I. Grabowski, V. Lotrich, and S. Hirata,
    Molecular Physics 108, 3313-3322 (2010) [QTP Special Issue],
    “Ab initio DFT-the seamless connection between WFT and DFT.”
  97. S. Hirata,
    Molecular Physics 108, 3113–3124 (2010) [QTP Special Issue],
    “Bridging quantum chemistry and solid-state physics.”
  98. M. Keçeli and S. Hirata,
    Physical Review B 82, 115107 (2010) (6 pages),
    “Fast coupled-cluster singles and doubles for extended systems: Application to the anharmonic vibrational frequencies of polyethylene in the Г approximation.”
  99. O. Sode and S. Hirata,
    The Journal of Physical Chemistry A 114, 8873–8877 (2010) [Klaus Ruedenberg Special Issue],
    “Second-order many-body perturbation study of solid hydrogen fluoride.”
  100. M. Keçeli, S. Hirata, and K. Yagi,
    The Journal of Chemical Physics 133, 034110 (2010) (6 pages),
    “First-principles calculations on anharmonic vibrational frequencies of polyethylene and polyacetylene in the Г approximation.”
  101. S. Hirata, M. Keçeli, and K. Yagi,
    The Journal of Chemical Physics 133, 034109 (2010) (14 pages),
    “First-principles theories for anharmonic lattice vibrations.”
  102. Y.-Y. Ohnishi and S. Hirata,
    The Journal of Chemical Physics 133, 034106 (2010) (8 pages),
    “Logarithm second-order many-body perturbation method for extended systems.”
  103. T. Shiozaki and S. Hirata,
    The Journal of Chemical Physics (Communications) 132, 151101 (2010) (4 pages),
    “Explicitly correlated second-order Møller–Plesset perturbation method for extended systems.”

  104. [2009]

  105. T. Shiozaki, E. F. Valeev, and S. Hirata,
    Annual Reports in Computational Chemistry 5, 131–148 (2009) [an invited Report],
    “Explicitly correlated coupled-cluster methods.”
  106. S. Hirata, E. B. Miller, Y.-Y. Ohnishi, and K. Yagi,
    The Journal of Physical Chemistry A 113, 12461–12469 (2009) [Russell M. Pitzer Special Issue],
    “On the validity of the Born–Oppenheimer separation and the accuracy of diagonal corrections in anharmonic molecular vibrations.”
  107. S. Hirata,
    Physical Chemistry Chemical Physics 11, 8397–8412 (2009) [an invited Perspective],
    “Quantum chemistry of macromolecules and solids.”
  108. S. Hirata and T. Shimazaki,
    Physical Review B 80, 085118 (2009) (7 pages),
    “Fast second-order many-body perturbation method for extended systems.”
  109. T. Shiozaki, E. F. Valeev, and S. Hirata,
    The Journal of Chemical Physics 131, 044118 (2009) (12 pages),
    “Explicitly correlated combined coupled-cluster and perturbation methods.”
  110. T. Shimazaki and S. Hirata,
    International Journal of Quantum Chemistry 109, 2953–2959 (2009) [Frank E. Harris Special Issue],
    “On the Brillouin-zone integrations in second-order many-body perturbation calculations for extended systems of one-dimensional periodicity”
  111. K. Yagi, H. Karasawa, S. Hirata, and K. Hirao,
    ChemPhysChem (Communications) 10, 1442–1444 (2009),
    “First-principles quantum vibrational simulations of the guanine-cytosine base pair.”
  112. M. Keçeli, T. Shiozaki, K. Yagi, and S. Hirata,
    Molecular Physics 107, 1283–1301 (2009) [Henry F. Schaefer III Special Issue],
    “Anharmonic vibrational frequencies and vibrationally-averaged structures of key species in hydrocarbon combustion: HCO+, HCO, HNO, HOO, HOO, CH3+, and CH3.”
  113. O. Sode, M. Keçeli, S. Hirata, and K. Yagi,
    International Journal of Quantum Chemistry 109, 1928–1938 (2009) [Kimihiko Hirao Special Issue],
    “Coupled-cluster and many-body perturbation study of energies, structures, and phonon dispersions of solid hydrogen fluoride.”
  114. T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev,
    The Journal of Chemical Physics 130, 054101 (2009) (10 pages),
    “Higher-order explicitly correlated coupled-cluster methods.”

  115. [2008]

  116. S. Hirata,
    The Journal of Chemical Physics 129, 204104 (2008) (11 pages),
    “Fast electron-correlation methods for molecular crystals: An application to the α, β1, and β2 modifications of solid formic acid.”
  117. S. Hirata and K. Yagi,
    Chemical Physics Letters 464, 123–134 (2008) [an invitated Frontiers Article],
    “Predictive electronic and vibrational many-body methods for molecules and macromolecules.”
  118. T. Shiozaki, M. Kamiya, S. Hirata and E. F. Valeev,
    The Journal of Chemical Physics (Communications) 129, 071101 (2008) (4 pages),
    “Explicitly correlated coupled-cluster singles and doubles method based on complete diagrammatic equations.”
  119. S. Hirata, K. Yagi, S. A. Perera, S. Yamazaki, and K. Hirao,
    The Journal of Chemical Physics 128, 214305 (2008) (9 pages),
    “Anharmonic vibrational frequencies and vibrationally averaged structures and nuclear magnetic resonance parameters of FHF.”
  120. T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev,
    Physical Chemistry Chemical Physics 10, 3358–3370 (2008) [an invited article in the themed issue on “Explicit-R12 correlation methods and local correlation methods”],
    “Equations of explicitly-correlated coupled-cluster methods.”
  121. K. Yagi, S. Hirata, and K. Hirao,
    Physical Chemistry Chemical Physics 10, 1781–1788 (2008),
    “Vibrational quasi-degenerate perturbation theory: Application to Fermi resonances in CO2, H2CO, and C6H6.”
  122. M. Kamiya, S. Hirata, and M. Valiev,
    The Journal of Chemical Physics 128, 074103 (2008) (11 pages),
    “Fast electron correlation methods for molecular clusters without basis set superposition errors.”

  123. [2007]

  124. T. Shiozaki and S. Hirata,
    Physical Review A (Rapid Communications) 76, 040503(R) (2007) (4 pages),
    “Grid-based numerical Hartree–Fock solutions of polyatomic molecules.”
  125. K. Yagi, S. Hirata, and K. Hirao,
    The Journal of Chemical Physics 127, 034111 (2007) (7 pages),
    “Efficient configuration selection scheme for vibrational second-order perturbation theory.”
  126. T. Shiozaki, K. Hirao, and S. Hirata,
    The Journal of Chemical Physics 126, 244106 (2007) (11 pages),
    “Second- and third-order triples and quadruples corrections to coupled-cluster singles and doubles in the ground and excited states.”
  127. M. Kamiya and S. Hirata,
    The Journal of Chemical Physics 126, 134112 (2007) (10 pages),
    “Higher-order equation-of-motion coupled-cluster methods for electron attachment.”
  128. P.-D. Fan, M. Kamiya, and S. Hirata,
    The Journal of Chemical Theory and Computation 3, 1036–1046 (2007),
    “Active-space equation-of-motion coupled-cluster methods through quadruple excitations for excited, ionized, and electron-attached states.”
  129. V. Rodriguez-Garcia, S. Hirata, K. Yagi, K. Hirao, T. Taketsugu, I. Schweigert, and M. Tasumi,
    The Journal of Chemical Physics 126, 124303 (2007) (6 pages),
    “Fermi resonance in CO2: a combined electronic coupled-cluster and vibrational configuration-interaction prediction.”
  130. K. Yagi, S. Hirata, and K. Hirao,
    Theoretical Chemistry Accounts 118, 681–691 (2007) [Fraga special issue],
    “Multiresolution potential energy surfaces for vibrational state calculations.”
  131. S. Hirata, T. Yanai, R. J. Harrison, M. Kamiya, and P.-D. Fan,
    The Journal of Chemical Physics 126, 024104 (2007) (14 pages),
    “High-order electron-correlation methods with scalar relativistic and spin-orbit corrections.”

  132. [2006]

  133. S. Hirata,
    Journal of Physics: Conference Series 46, 249-253 (2006),
    “Automated symbolic algebra for quantum chemistry.”
  134. M. Kamiya and S. Hirata,
    The Journal of Chemical Physics 125, 074111 (2006) (14 pages),  
    “Higher-order equation-of-motion coupled-cluster methods for ionization processes.”
  135. S. Hirata,
    Theoretical Chemistry Accounts 116, 2–17 (2006) [an invited article; a part of the special issue “New Perspective in Theoretical Chemistry”],
    “Symbolic algebra in quantum chemistry.”
  136. V. Rodriguez-Garcia, K. Yagi, K. Hirao, S. Iwata, and S. Hirata,
    The Journal of Chemical Physics 125, 014109 (2006) (9 pages) [selected as an article in Virtual Journal of Biological Physics Research, July 15 (2006)],
    “Franck–Condon factors based on anharmonic vibrational wave functions of polyatomic molecules.”
  137. Y. Shao, et al.,
    Physical Chemistry Chemical Physics 8, 3172–3191 (2006) [an invited article],
    “Advances in methods and algorithms in a modern quantum chemistry package.”
  138. L. Meissner, S. Hirata, and R. J. Bartlett,
    Theoretical Chemistry Accounts 116, 440–449 (2006),
    “Making more extensive use of the coupled-cluster wave function: from the standard energy expression to energy expectation value.”
  139. P.-D. Fan and S. Hirata,
    The Journal of Chemical Physics 124, 104108 (2006) (9 pages),
    “Active-space coupled-cluster methods through connected quadruple excitations.”
  140. Y. Shigeta, K. Hirao, and S. Hirata,
    Physical Review A (Rapid Communications) 73, 010502(R) (2006) (4 pages),
    “Exact-exchange time-dependent density-functional theory with the frequency-dependent kernel.”
  141. P. Piecuch, S. Hirata, K. Kowalski, P.-D. Fan, and T. L. Windus,
    International Journal of Quantum Chemistry 106, 79–97 (2006) [an invited article],
    “Automated derivation and parallel computer implementation of renormalized and active-space coupled-cluster methods.”
  142. K. Kowalski, S. Hirata, M. Włoch, P. Piecuch, and T. L. Windus,
    The Journal of Chemical Physics 123, 074319 (2005) (6 pages),
    “Active-space coupled-cluster study of electronic states of Be3.”

  143. [2005]

  144. H. Wang, J. Szczepanski, S. Hirata, and M. Vala,
    The Journal of Physical Chemistry A 109, 9737–9746 (2005),
    “Vibrational and electronic absorption spectroscopy of dibenzo[b,def]chrysene and its ions.”
  145. S. Hirata,
    The Journal of Chemical Physics (Note) 123, 026101 (2005) (1 page),
    “Time-dependent density functional theory based on optimized effective potentials for van der Waals forces.”
  146. G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R. Harrison, S. Hirata, S. Krishanmoorthy, S. Krishnan, C.-C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov,
    Proceedings of the IEEE 93, 276–292 (2005) [an invited article],
    “Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry models.”
  147. S. Hirata, S. Ivanov, R. J. Bartlett, and I. Grabowski,
    Physical Review A 71, 032507 (2005) (7 pages),
    “Exact-exchange time-dependent density functional theory for static and dynamic polarizabilities.”
  148. S. Hirata,
    The Journal of Chemical Physics 122, 094105 (2005) (10 pages),
    “Third- and fourth-order perturbation corrections to excitation energies from configuration interaction singles.”
  149. R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov,
    The Journal of Chemical Physics 122, 034104 (2005) (12 pages),
    “The exchange-correlation potential in ab initio density functional theory.”
  150. S. Hirata, M. Valiev, M. Dupuis, S. S. Xantheas, S. Sugiki, and H. Sekino,
    Molecular Physics 103, 2255–2265 (2005),
    “Fast electron correlation methods for molecular clusters in the ground and excited states.”
  151. S. A. Perera, P. B. Rozyczko, R. J. Bartlett, and S. Hirata,
    Molecular Physics 103, 2081–2083 (2005),
    “Improving the performance of direct coupled cluster analytical gradients algorithms.”

  152. [2004]

  153. S. Hirata, P.-D. Fan, A. A. Auer, M. Nooijen, and P. Piecuch,
    The Journal of Chemical Physics 121, 12197–12207 (2004),
    “Combined coupled-cluster and many-body perturbation theories.”
  154. S. Hirata,
    The Journal of Chemical Physics 121, 51–59 (2004),
    “Higher-order equation-of-motion coupled-cluster methods.”
  155. J. Banisaukas, J. Szczepanski, J. Eyler, M. Vala, and S. Hirata,
    The Journal of Physical Chemistry A 108, 3713–3722 (2004),
    “Vibrational and electronic absorption spectroscopy of 2,3-benzofluorene and its cation. Photodissociation pathways of the cation.”
  156. S. Hirata, T. Yanai, W. A. de Jong, T. Nakajima, and K. Hirao,
    The Journal of Chemical Physics 120, 3297–3310 (2004),
    “Third-order Douglas–Kroll relativistic coupled-cluster theory through connected single, double, triple, and quadruple substitutions: Applications to diatomic and triatomic hydrides.”
  157. S. Hirata, R. Podeszwa, M. Tobita, and R. J. Bartlett,
    The Journal of Chemical Physics 120, 2581–2592 (2004),
    “Coupled-cluster singles and doubles for extended systems.”

  158. [2003]

  159. Y. Asai, S. Hirata, and K. Yamashita,
    The Journal of the Physical Society of Japan, 72, 3286–3290 (2003),
    “Local electronic excitation mechanism for nanofabrication of polydiacetylene molecular wire.”
  160. S. Hirata, C.-G. Zhan, E. Aprà, T. Windus, and D. A. Dixon,
    The Journal of Physical Chemistry A, 107, 10154–10158 (2003),
    “A new, self-contained asymptotic correction scheme to exchange-correlation potentials for time-dependent density functional theory.”
  161. S. Hirata,
    The Journal of Physical Chemistry A, 107, 9887–9897 (2003),
    “Tensor contraction engine: abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories.”
  162. S. Hirata, M. Head-Gordon, J. Szczepanski, and M. Vala,
    The Journal of Physical Chemistry A, 107, 4940–4951 (2003),
    “Time-dependent density functional study of the electronic excited states of polycyclic aromatic hydrocarbon radical cations.”
  163. M. Tobita, S. Hirata, and R. J. Bartlett,
    The Journal of Chemical Physics, 118, 5776–5792 (2003),
    “The analytical energy gradient scheme in the Gaussian based Hartree–Fock and density functional theory for two-dimensional systems using fast multipole method.”
  164. J. Banisaukas, J. Szczepanski, J. Eyler, M. Vala, S. Hirata, M. Head-Gordon, J. Oomens, G. Meijer, and G. von Helden,
    The Journal of Physical Chemistry A, 107, 782–793 (2003),
    “Vibrational and electronic spectroscopy of acenaphthylene and its cation.”
  165. S. Ivanov, S. Hirata, I. Grabowski, and R. J. Bartlett,
    The Journal of Chemical Physics, 118, 461–470 (2003),
    “Connection between Görling–Levy and many-body perturbation approaches in density functional theory.”

  166. [2002]

  167. J. Szczepanski, J. Banisaukas, M. Vala, and S. Hirata,
    The Journal of Physical Chemistry A, 106, 6935–6940 (2002),
    “Preresonance Raman spectrum of the C13H9 fluorene-like radical.”
  168. S. Hirata, S. Ivanov, I. Grabowski, and R. J. Bartlett,
    The Journal of Chemical Physics, 116, 6468–6481 (2002) [selected as an article in Virtual Journal of Biological Physics Research, 3 (2002)],
    “Time-dependent density functional theory employing optimized effective potentials.”
  169. J. Szczepanski, J. Banisaukas, M. Vala, S. Hirata, R. J. Bartlett, and M. Head-Gordon,
    The Journal of Physical Chemistry A, 106, 63–73 (2002),
    “Vibrational and electronic spectroscopy of the fluorene cation.”
  170. I. Grabowski, S. Hirata, S. Ivanov, and R. J. Bartlett,
    The Journal of Chemical Physics, 116, 4415–4425 (2002),
    Ab initio density functional theory: OEP-MBPT(2). A new orbital-dependent correlation functional.”
  171. S. Ivanov, S. Hirata, and R. J. Bartlett,
    The Journal of Chemical Physics, 116, 1269–1276 (2002),
    “Finite-basis-set optimized effective potential exchange-only method.”

  172. [2001]

  173. S. Hirata, I. Grabowski, M. Tobita, and R. J. Bartlett,
    Chemical Physics Letters, 345, 475–480 (2001),
    “Highly accurate treatment of electron correlation in polymers: Coupled-cluster and many-body perturbation theories.”
  174. S. Hirata, S. Ivanov, I. Grabowski, R. J. Bartlett, K. Burke, and J. D. Talman,
    The Journal of Chemical Physics, 115, 1635–1649 (2001),
    “Can optimized effective potentials be determined uniquely?”
  175. M. Tobita, S. Hirata, and R. J. Bartlett,
    The Journal of Chemical Physics, 114, 9130–9141 (2001),
    “A crystalline orbital study of polydiacetylenes.”
  176. S. Hirata, M. Nooijen, I. Grabowski, and R. J. Bartlett,
    The Journal of Chemical Physics, 114, 3919–3928 (2001); Erratum 115, 3967–3968 (2001),
    “Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis.”
  177. C.-P. Hsu, S. Hirata, and M. Head-Gordon,
    The Journal of Physical Chemistry A, 105, 451–458 (2001),
    “Excitation energies from time-dependent density functional theory for linear polyene oligomers: Butadiene to decapentaene.”

  178. [2000]

  179. S. Hirata, M. Nooijen, and R. J. Bartlett,
    Chemical Physics Letters, 328, 459–468 (2000),
    “High-order determinantal equation-of-motion coupled-cluster calculations for ionized and electron-attached states.”
  180. J. Kong, et al.,
    The Journal of Computational Chemistry, 21, 1532–1548 (2000),
    “Q-Chem 2.0: A high performance ab initio electronic structure program package.”
  181. S. Hirata, M. Nooijen, and R. J. Bartlett,
    Chemical Physics Letters, 326, 255–262 (2000),
    “High-order determinantal equation-of-motion coupled-cluster calculations for electronic excited states.”
  182. S. Hirata and R. J. Bartlett,
    Chemical Physics Letters, 321, 216–224 (2000),
    “High-order coupled-cluster calculations through connected octuple excitations.”
  183. S. Hirata and R. J. Bartlett,
    The Journal of Chemical Physics, 112, 7339–7344 (2000),
    “Many-body Green’s-function calculations on the electronic excited states of extended systems.”

  184. [1999]

  185. S. Ivanov, S. Hirata, and R. J. Bartlett,
    Physical Review Letters, 83, 5455–5458 (1999),
    “Exact exchange treatment for molecules in finite-basis-set Kohn–Sham theory.”
  186. S. Hirata, M. Head-Gordon, and R. J. Bartlett,
    The Journal of Chemical Physics, 111, 10774–10786 (1999),
    “Configuration interaction singles, time-dependent Hartree–Fock, and time-dependent density functional theory for the electronic excited states of extended systems.”
  187. S. Hirata, T. J. Lee, and M. Head-Gordon,
    The Journal of Chemical Physics, 111, 8904–8912 (1999),
    “Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene.”
  188. S. Hirata and M. Head-Gordon,
    Chemical Physics Letters, 314, 291–299 (1999),
    “Time-dependent density functional theory within the Tamm–Dancoff approximation.”
  189. S. Hirata and M. Head-Gordon,
    Chemical Physics Letters, 302, 375–382 (1999),
    “Time-dependent density functional theory for radicals: An improved description of excited states with substantial double excitation character.”

  190. [1998]

  191. S. Hirata and S. Iwata,
    The Journal of Physical Chemistry A, 102, 8426–8436 (1998),
    “Ab initio Hartree–Fock and density functional studies on the structures and vibrations of an infinite hydrogen fluoride polymer.”
  192. S. Hirata and S. Iwata,
    The Journal of Chemical Physics, 109, 4147–4155 (1998),
    “Analytical energy gradients in second-order Møller–Plesset perturbation theory for extended systems.”
  193. S. Hirata, H. Torii, and M. Tasumi,
    Physical Review B, 57, 11994–12001 (1998),
    “Density-functional crystal orbital study on the structures and energetics of polyacetylene isomers.”
  194. S. Hirata and S. Iwata,
    The Journal of Molecular Structure (Theochem), 451, 121–134 (1998),
    “Analytical second derivatives in ab initio Hartree–Fock crystal orbital theory of polymers.”
  195. S. Hirata and S. Iwata,
    The Journal of Chemical Physics, 108, 7901–7908 (1998),
    “Density functional crystal orbital study on the normal vibrations and phonon dispersion curves of all-trans polyethylene.”

  196. [1997]

  197. S. Hirata and S. Iwata,
    The Journal of Chemical Physics, 107, 10075–10084 (1997),
    “Density functional crystal orbital study on the normal vibrations of polyacetylene and polymethineimine.”

  198. [1996]

  199. S. Hirata, H. Torii, and M. Tasumi,
    The Bulletin of the Chemical Society of Japan, 69, 3089–3106 (1996),
    “Stereostructural and vibrational analyses of cis-polyacetylene based on density functional calculations of oligoenes.”
  200. S. Hirata, H. Torii, Y. Furukawa, M. Tasumi, and J. Tomkinson,
    Chemical Physics Letters, 261, 241–245 (1996),
    “Inelastic neutron scattering from trans-polyacetylene.”

  201. [1995]

  202. S. Hirata, H. Torii, and M. Tasumi,
    The Journal of Chemical Physics, 103, 8964–8979 (1995),
    “Vibrational analyses of trans-polyacetylene based on ab initio second-order Møller–Plesset perturbation calculations of trans-oligoenes.”
  203. S. Hirata, H. Yoshida, H. Torii, and M. Tasumi,
    The Journal of Chemical Physics, 103, 8955–8963 (1995),
    “Vibrational analyses of trans,trans-1,3,5,7-octatetraene and all-trans-1,3,5,7,9-decapentaene based on ab initio molecular orbital calculations and observed infrared and Raman spectra.”

Book Chapters

  1. S. Hirata, K. Gilliard, X. He, M. Keçeli, J. Li, M. A. Salim, O. Sode, and K. Yagi,
    A chapter in Fragmentation: Toward Accurate Calculations on Complex Molecular Systems edited by Mark S. Gordon (Wiley, Chichester, 2017),
    “Ab initio ice, dry ice, and liquid water.”
  2. S. Hirata, O. Sode, M. Keçeli, and T. Shimazaki,
    A chapter in Accurate Condensed-Phase Quantum Chemistry edited by F. Manby, p.129–161 (CRC Press, Boca Raton, 2010),
    “Electron correlation in solids: Delocalized and localized orbital approaches.”
  3. S. Hirata, T. Shiozaki, E. F. Valeev, and M. Nooijen,
    A chapter in Recent Progress in Coupled-Cluster Methods: Theory and Application edited by P. Carsky, J. Paldus, and J. Pittner, p.191–217 (Springer, Dordrecht, 2010),
    “Eclectic electron-correlation methods.”
  4. S. Hirata, P.-D. Fan, M. Head-Gordon, M. Kamiya, M. Keçeli, T. J. Lee, T. Shiozaki, J. Szczepanski, M. Vala, E. F. Valeev, and K. Yagi,
    A chapter in Recent Advances in Spectroscopy: Astrophysical, Theoretical and Experimental Perspective edited by R. K. Chaudhuri, R. K. Mekkaden, M. V. Raveendran, A. S. Narayanan, p.21–30 (Springer-Verlag, Berlin, 2010),
    “Computational interstellar chemistry.”
  5. S. Hirata,
    A section (in Japanese) in Computational Science of Molecular Systems (分子システムの計算科学) edited by M. Sasai, p.43-71 (Kyoritsu, Tokyo, 2010),
    “Coupled-cluster and many-body perturbation theories (結合クラスター理論および多体摂動論).”
  6. S. Hirata, P.-D. Fan, T. Shiozaki, and Y. Shigeta,
    A chapter in Radiation Induced Molecular Phenomena in Nucleic Acid: A Comprehensive Theoretical and Experimental Analysis, in the book series Challenges and Advances in Computational Chemistry and Physics, Vol. 5 edited by Jerzy Leszczynski and Manoj Shukla, p.15–64 (Springer, 2008),
    “Single-reference methods for excited states in molecules and polymers.”
  7. S. Hirata,
    A chapter (in Japanese) in Computational Chemistry (計算化学) in the book series Encyclopedia for Experimental Chemistry, 5th Edition (実験化学講座) (The Chemical Society of Japan, 2003),
    “Density functional theory (密度汎関数法).”

Proceedings (some refereed)

  1. S. Hirata,
    33rd Annual Combustion Research Meeting (2012),
    “Breakthrough design and implementation of electronic and vibrational many-body theories.”
  2. S. Hirata,
    32nd Annual Combustion Research Meeting (2011),
    “Breakthrough design and implementation of electronic and vibrational many-body theories.”
  3. S. Hirata,
    31st Annual Combustion Research Meeting (2010),
    “Breakthrough design and implementation of electronic and vibrational many-body theories.”
  4. S. Hirata,
    2009 Condensed Phase and Interfacial Molecular Science Meeting,
    “Breakthrough design and implementation of electronic and vibrational many-body theories.”
  5. S. Hirata,
    30th Annual Combustion Research Meeting (2009),
    “Breakthrough design and implementation of electronic and vibrational many-body theories.”
  6. S. Hirata,
    2008 Condensed Phase and Interfacial Molecular Science Meeting,
    “Breakthrough design and implementation of electronic and vibrational many-body theories.”
  7. S. Hirata,
    2007 Condensed Phase and Interfacial Molecular Science Meeting,
    “Breakthrough design and implementation of electronic and vibrational many-body theories.”
  8. A. Hartono, A. Sibiryakov, M. Nooijen, G. Baumgartner, D. E. Bernholdt, S. Hirata, C. Lam, R. Pitzer, J. Ramanujam, and P. Sadayappan,
    Proceedings of Computational Science: ICCS 2005,
    “Automated operation minimization of tensor contraction expressions in electronic structure calculations.”
  9. T. Yanai, H. Nakano, T. Nakajima, T. Tsuneda, S. Hirata, Y. Kawashima, Y. Nakao, M. Kamiya, H. Sekino, and K. Hirao,
    Proceedings of Computational Science: ICCS 2003,
    “UTChem: A program for ab initio quantum chemistry.”
  10. T. L. Windus, E. J. Bylaska, M. Dupuis, S. Hirata, L. Pollack, D. M. Smith, T.P. Straatsma, and E. Aprà,
    Proceedings of Computational Science: ICCS 2003,
    “NWChem: New functionality.”
  11. M. Vala, J. Szczepanski, J. Banisaukas, and S. Hirata,
    NASA Laboratory Astrophysics Workshop 2002,
    “Dehydrogenated neutral PAH radicals as carriers of the DIBs? Spectroscopy of the fluorene-like C13H9 radical.”
  12. G. Baumgartner, D. E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C.-C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam, and P. Sadayappan,
    Proceedings of Supercomputing 2002,
    “A high-level approach to synthesis of high-performance codes for quantum chemistry.”

Miscellaneous

  1. S. Hirata,
    相対論的電子論 News, Vol.7 (July, 2017) [Relativistic Electronic-Structure Theory News (in Japanese)],
    “Interview.”
  2. S. Hirata,
    IMS (Institute for Molecular Science) Letters, (July, 2007) [an invited column in a news letter (in Japanese)],
    “Postdoctoral Stint in the United States (アメリカでのポスドク修行).”