1H{31P} – Phosphorus Decoupled Proton NMR on the UI400 or U500

Decoupling 31P from 1H on the UI400 or U500 is easily accomplished with the standard QUAD probe. This handout outlines a procedure to acquire 1H{31P} spectra, where the phosphorus decoupling can be selective or non-selective. If you want to run this experiment on the U400 or VXR500 a cabling change is required. Check with Vera Mainz before attempting to run this experiment on any instruments EXCEPT the UI400 or U500.

Preliminaries:

- **Insert, Lock and Shim** as usual.
- If you are doing variable temperature work AND want to acquire 1H{31P} spectra, check with Lab staff as the temperature change might affect the efficiency of the decoupling.

Acquire Preliminary Spectra:

NOTE: Even if you’ve acquired this data before, you need to run them again.

jexp1

Setup and run a standard 1H experiment.

jexp2

Setup and run a standard 31P experiment. Make sure you can see all the 31P peaks you plan to decouple.

1) If you want to decouple all 31P peaks at the same time, place the left cursor at the center of the region of interest and type movetof <rtn>. Record tof=____________________.

2) If you plan to acquire selectively decoupled 1H{31P} spectra, place the cursor on the center of a 31P peak of interest, type movetof. Record tof=____________________.

If you have more than one 31P peak to decouple, you need to reload the FILE-31P-REFN fid and wft for each frequency. After the wft, place the cursor on the center of the 31P peak of interest, type movetof. Record tof=____________________.

Continue to repeat this step for each 31P peak of interest.

NOTE: You need to reload the reference 31P spectrum each time before you execute another movetof command!!

1H{31P} Decoupling Setup – decoupling all 31P peaks at the same time:

jexp3

Setup and run a standard 1H experiment.

mp(1,3) move the 1H parameters from exp1 to exp3

xdec sets up for 1H{31P} decoupling

Enter nucleus to be decoupled (e.g. P31): P31 <rtn>
Check that dn=P31

dof=________

set the tof value from the ^{31}P spectrum, above; if you have multiple values, you can do them one at a time or in an array.

nt=1, if possible, but the minimum number of scans needed
ga

NOTE: To acquire a ^{31}P-coupled and decoupled array (so you can compare/plot them easily) set

dm=’nnn’, ’nny’
gain=’y’

Turns off the autoscale gain function for arrays
dssa or dssh
display arrayed data stacked vertically or horizontally
pl(’all’) pscale page
plot stacked data

$^{1}\text{H}\{^{31}\text{P}\}$ Decoupling Setup – decoupling ^{31}P peaks one at a time:

Use the same setup as above, with the following changes:

jexp3
join experiment 1
mp(1,3)
move the 1H parameters from exp1 to exp3
xdec
sets up for $^{1}\text{H}\{^{31}\text{P}\}$ decoupling

Enter nucleus to be decoupled (e.g. P31): P31<rtn>

Check that dn=P31

dof=________

set the tof value from the ^{31}P spectrum, above; if you have multiple values, you can do them one at a time or in an array.

dm=’nny’
dmm=’c’
dmf=250
dpwr=20 (This may change depending on how close your peaks are to each other and the JPP coupling constant. Check with Lab staff if you have problems.)

nt=1, if possible, but the minimum number of scans needed
ga

Example: Bis(diphenylphosphino)methane monoxide (dppmO) – Ph$_2$P-CH$_2$-(Ph$_2$)P=O (data from Inorg. Chem. v/9(7), 1980, 1982-1987):

$^{2}\text{J}_{\text{P-CH}} = <0.5 \text{ Hz}; \quad ^{2}\text{J}_{\text{P(O)CH}} = 12.5 \text{ Hz}$

$\delta \ ^{1}\text{H}$: CH$_2$ = 3.06 (doublet) (in my data, the doublet at ~ δ 3.22 is the CH$_2$ from dppmO; the triplet at ~ δ 3.74 is the CH$_2$ from dppmO$_2$)

$\delta \ ^{31}\text{P}$: P-CH$_2$ = -28.4 (in my data, found at -26.7ppm)

$\delta \ ^{31}\text{P}$: P(O) CH$_2$ = 27.7 (in my data, found at 33.3ppm)

$\delta \ ^{31}\text{P}$ dppmO$_2$: P(O) CH$_2$ = 24.2 (in my data, found at 28.6ppm)
dppmO – Ph₂P-CH₂-(Ph₂)P=O
All 31P Peaks Decoupled

31P{¹H} Spectrum dppmO and dppmO₂
dppmO – Ph₂P-CH₂-(Ph₂)P=O

1H Spectra showing 31P Peaks Decoupled One at a Time