Aufbau Approach to Multimetallic Ensembles Based on Tetrathiooxalate: $\left[C p^{*}{ }_{4} R h_{4}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)_{2}\right]^{2+},\left[C p_{3} R h_{2} R u\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{+}$, and $\left[C^{*}{ }_{6} R h_{6}\left(\mathbf{C}_{2} \mathbf{S}_{4}\right)_{2}\right]^{4+}$

Geoffrey A. Holloway, Kevin K. Klausmeyer, Scott R. Wilson, and Thomas B. Rauchfuss*
School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Received J une 20, 2000
Experiments aimed at the characterization of new coordination modes for tetrathiooxal ate (TTO) are described. Cyclic voltammetric (CV) measurements on $\mathrm{Cp}_{2} \mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)(\mathbf{1})$ revealed an irreversible oxidation as part of an ECE process that results in the chemically reversible dimerization of $\mathbf{1}^{+}$. Treatment of $\mathbf{1}$ with $\mathrm{CpFe}_{5} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Me}^{2} \mathrm{BF}_{4}$ fol lowed by anion exchange gave $\left[\mathrm{Cp}^{*}{ }_{4} \mathrm{Rh}_{4}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$, the dication of which consists of a dimer of $\mathbf{1}^{+}$linked through two pairs of Rh-S bonds. A second new bonding mode for TTO was generated by treatment of $\mathbf{1}$ with $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}$ to give $\left[\mathrm{Cp}_{3} \mathrm{Rh}_{2} \mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{+}(3)$ wherein $\mathrm{Cp}^{*} \mathrm{Ru}^{+}$is η^{5}-bonded to one $\mathrm{RhS}_{2} \mathrm{C}_{2}$ ring. A third new bonding mode for TTO is illustrated by $\left[\mathrm{Cp}_{6} \mathrm{Rh}_{6}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)_{2}\right]^{4+}$, formed by the reaction of $\mathrm{Cp} \mathrm{Rh}^{*}(\mathrm{MeCN})_{3^{2+}}$ and $\mathbf{1}$. The structure can be viewed as a dimer of 3, except that there are no $M-M$ bonds: the Cp*Rh ${ }^{2+}$ fragments are bonded via an $\eta^{4}-$ interaction to $\mathrm{RhS}_{2} \mathrm{C}_{2}$ rings. Furthermore, the $\left[\mathrm{Cp}_{3} \mathrm{Rh}_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{2+}$ subunits, which are otherwise isoelectronic with 3, dimerize, such that all eight sulfur atoms are triply bridging.

Introduction

Tetrathiooxalate, $\mathrm{C}_{2} \mathrm{~S}_{4}{ }^{2-}$, and its reduced derivative ethylenetetrathiolate, $\mathrm{C}_{2} \mathrm{~S}_{4}{ }^{4-}$, have been the subject of intermittent study since the 1980s. Complexes of TTO are related to the metal dithiolenes, ${ }^{1}$ e.g., they are typi cally electroactive with planar $\mathrm{MS}_{2} \mathrm{C}_{2}$ subunits, ${ }^{2}$ but TTO complexes are invariably di- or polynuclear. M onometallic TTO derivatives are not known. The bridging and the electroactive characteristics of TTO are related to the semiconducting behavior of the coordination polymers $\left[\mathrm{MC}_{2} \mathrm{~S}_{4}\right]_{\mathrm{n}}(\mathrm{M}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Pd}) .^{3}$ It is interesting to contrast the chemistry of the MTTO complexes with the corresponding oxalates, which are generally not electroactive, which do not form electrically conductive solids, and which often occur as terminal ligands.

Reflecting the bridging tendency of TTO, molecular derivatives have only been obtained through the use of strongly coordinating blocking ligands. Representative examples include $\left[\mathrm{Cp}_{2} \mathrm{Ti}_{2} \mathrm{C}_{2} \mathrm{~S}_{4},{ }^{4}\left[\mathrm{Cp} * \mathrm{Ni}_{2} \mathrm{C}_{2} \mathrm{~S}_{4}, 5\right.\right.$ [(triphos)Rh] $\mathrm{C}_{2} \mathrm{~S}_{4},{ }^{6}$ and $[\mathrm{Ni} \text { (dithiol ene) }]_{2} \mathrm{C}_{2} \mathrm{~S}_{4}{ }^{2-} .7,8$ Routes to M_{2-} TTO derivatives often lack generality, e.g., in situ

[^0]
coupling of CS_{2} ligands. ${ }^{4-6,9}$ Hoyer, however, has shown that organic salts of $\mathrm{C}_{2} \mathrm{~S}_{4}{ }^{2-}$ are reliable precursors to TTO complexes, $, 8,10-13$ although this straightforward method has not been explored to any great extent by other groups. F ollowing H oyer's precedent, we recently prepared $\mathrm{Cp}_{2} \mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\left(\mathbf{1} \mathrm{Cl}_{2}\right)$ by salt metathesis using ($\left.\mathrm{Et}_{4} \mathrm{~N}\right)_{2} \mathrm{C}_{2} \mathrm{~S}_{4} .{ }^{14}$ This well-behaved dirhodium species can be described as a tetrathiooxalate derivative on the basis of crystallographic criteria. This species undergoes efficient reductive dechlorination to the corresponding ethylenetetrathiolate $\mathrm{Cp}_{2} \mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)(\mathbf{1})$, as described in Scheme 1.
Crystallographic characterization of $\mathbf{1}$ shows that the $\mathrm{Rh}_{2} \mathrm{C}_{2} \mathrm{~S}_{4}$ core is planar; thus the extended π-system is

[^1]

Figure 1. Cydic voltammogram ($100 \mathrm{mV} / \mathrm{s}$) of $\mathbf{1}$ and $\mathrm{CpFe}-$ [$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Me}$] (internal standard) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution vs Ag / AgCl at $25^{\circ} \mathrm{C}$.
exposed to attack by electrophiles. This species is therefore a promising starting point for the exploration of new $\mathrm{C}_{2} \mathrm{~S}_{4}$-based complexes. Through such efforts, we have discovered three new bonding modes of the $\mathrm{C}_{2} \mathrm{~S}_{4}$ ligand.

Results and Discussion

Oxidative Dimerization of $C p_{2} \mathbf{R h}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)$ (1). Cyclic voltammetric (CV) measurements on 1 revealed an irreversible oxidation at 0.582 V (all potentials referenced to NHE). The return reductive sweep showed that the electro-oxidized species is reduced, again irreversibly, at -0.247 V to regenerate $\mathbf{1}$ (Figure 1). These results can be explained as follows: $1 \mathrm{e}^{-}$oxidation of $\mathbf{1}$ initially gives the unstable cation $\mathbf{1}^{+}$. This cation undergoes dimerization to give the tetrametallic species $\left[\mathrm{Cp}^{*}{ }_{4} \mathrm{Rh}_{4}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)_{2}\right]^{2+}, \mathbf{2}\left(=\left[\mathbf{1}^{+}\right]_{2}\right)$. The dimerization is complete within the time scale of the CV scan ($\sim 12 \mathrm{~s}$). Upon reduction of 2 at -0.247 V , the monomer $\mathbf{1}$ is regenerated as evidenced by the redox couple at -1.17 V.

To better understand the electrochemical results, we undertook the preparative-scale synthesis of $\mathbf{2}$. Treatment of a solution of $\mathbf{1}$, which is blue, with 1 equiv of the oxidant ${ }^{15} \mathrm{CpFe}\left[\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Me}^{2}\right] \mathrm{BF}_{4}$ gave a brown solution from which we isolated the brown solid [2]$\left(\mathrm{BF}_{4}\right)_{2}$ (eq 1). Subsequent exchange of BF_{4}^{-}with BPh_{4}^{-}

$$
\begin{aligned}
& \underset{\mathbf{1}}{2 \mathrm{Cp}_{2} \mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)}+\underset{2(\mathrm{AcFc})\left(\mathrm{BF}_{4}\right) \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}}}{\left[\mathrm{Cp}^{*} \mathrm{Rh}_{4}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}+2 \mathrm{AcFc}(} \\
& {[2]\left(\mathrm{BF}_{4}\right)_{2}}
\end{aligned}
$$

in MeOH solution gave dark brown crystals of [2]$\left(\mathrm{BPh}_{4}\right)_{2}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of [2] $\left(\mathrm{BPh}_{4}\right)_{2}$ consists of a single sharp signal in the $\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}$ region, consistent with a symmetric structure and a diamagnetic ground state. Integration of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ peak vs the BPh_{4}^{-} signals agrees with the formula of [2] $\left(\mathrm{BPh}_{4}\right)_{2}$.

Complex 2 was further examined by single-crystal X-ray diffraction. In the solid state, [2] $\left(\mathrm{BPh}_{4}\right)_{2}$ consists of a well-separated dication, which is a dimer of $\mathbf{1}^{+}$ (Figure 2). The two halves of the cation are linked

[^2]

Figure 2. Structure of $\mathbf{2}$ showing 50% probability ellipsoids and atom labeling scheme.

Figure 3. Structure of $\mathbf{3}$ showing 50% probability ellipsoids and atom labeling scheme.
through two pairs of Rh-S bonds such that four of the eight sulfur atoms are three-coordinate. Three distinct ranges of $\mathrm{Rh}-\mathrm{S}$ bond distances are evident (Table 1). The $\mathrm{C}_{2} \mathrm{~S}_{4}$ units remain planar while the Rh atoms are shifted out of the $\mathrm{C}_{2} \mathrm{~S}_{4}$ planes by $0.58 \AA$ due to interactions with the sulfur atoms in the other moiety. The $\mathrm{C}-\mathrm{C}$ distance of $1.39 \AA$ is slightly longer than that of a double bond, lying between the $\mathrm{C}-\mathrm{C}$ distances found in $\mathbf{1 C l} I_{2}$ and 1 .
$\mathbf{C p}{ }_{2} \mathbf{R} \mathbf{h}_{\mathbf{2}}\left(\mathbf{C}_{2} \mathbf{S}_{\mathbf{4}}\right)$ as a π-Ligand for $\mathbf{C p * R u} \mathbf{u}^{+}$. The ability of $\mathbf{1}$ to serve as a ligand for the formation of multinuclear ensembles was investigated through its reaction with sources of the $12 \mathrm{e}^{-}$unit $\mathrm{Cp} \mathrm{RRu}^{+}$. Treatment of solutions of $\mathbf{1}$ with $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}$ gave purple-red $\left[\mathrm{Cp}_{3} \mathrm{Rh}_{2} R \mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{+}$(3) according to eq 2. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ displays three Cp^{*} signals.

$$
\begin{gather*}
{\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{NCMe})_{3}\right]\left[\mathrm{PF}_{6}\right]+\mathrm{Cp}_{2} \mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right) \xrightarrow[-3 \mathrm{MeCN}]{\mathrm{CH}_{2} \mathrm{Cl}_{2}}} \\
{\left[\mathrm{Cp}_{3} \mathrm{Rh}_{2} \mathrm{Ru}_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]\left[\mathrm{PF}_{6}\right]} \tag{2}\\
{[3] \mathrm{PF}_{6}}
\end{gather*}
$$

Compound $\mathbf{3}$ was characterized by single-crystal X-ray diffraction, which revealed the structure shown in Figure 3. Crystallographic analysis of $\mathbf{3}$ shows that the connectivity of the $\mathrm{Cp}^{*}{ }_{2} \mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)$ core is unmodified. The $\mathrm{Cp}^{*} \mathrm{Ru}^{+}$unit π-bonds to one $\mathrm{RhS}_{2} \mathrm{C}_{2}$ ring, causing that Rh to be displaced $0.34 \AA$ from the $\mathrm{C}_{2} \mathrm{~S}_{4}$ plane. The π-bonding involves an η^{5}-interaction, which in turn implies direct Ru-Rh bonding (2.8397 \AA). The Ru-S

Table 1. Selected Bond Lengths (\AA) and Bond Angles (deg) for [2], [3], and [4]

Bond Lengths (\AA) for [2]			
$\mathrm{Rh}(1)-\mathrm{S}(2)$	2.296(2)	$\mathrm{Rh}(4)-\mathrm{S}(4)$	2.475(3)
$\mathrm{Rh}(1)-\mathrm{S}(1)$	2.394(2)	$\mathrm{S}(1)-\mathrm{C}(1)$	1.777 (8)
$\mathrm{Rh}(1)-\mathrm{S}(6)$	2.473(2)	$\mathrm{S}(2)-\mathrm{C}(2)$	$1.696(8)$
$\mathrm{Rh}(2)-\mathrm{S}(3)$	2.299(2)	$\mathrm{S}(3)-\mathrm{C}(1)$	1.691 (8)
$\mathrm{Rh}(2)-\mathrm{S}(4)$	2.400 (2)	S(4)-C(2)	$1.755(8)$
$\mathrm{Rh}(2)-\mathrm{S}(7)$	2.468 (2)	S(5)-C(3)	1.690(8)
$\mathrm{Rh}(3)-\mathrm{S}(5)$	$2.307(2)$	$\mathrm{S}(6)-\mathrm{C}(4)$	1.783(8)
$\mathrm{Rh}(3)-\mathrm{S}(6)$	2.413(2)	S(7)-C(3)	1.747 (8)
$\mathrm{Rh}(3)-\mathrm{S}(1)$	$2.461(2)$	$\mathrm{S}(8)-\mathrm{C}(4)$	$1.694(8)$
$\mathrm{Rh}(4)-\mathrm{S}(8)$	2.298(2)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.379)11)
$\mathrm{Rh}(4)-\mathrm{S}(7)$	2.404(2)	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.407(10)$
Bond Angles (deg) for [2]			
$\mathrm{S}(2)-\mathrm{Rh}(1)-\mathrm{S}(1)$	86.94(8)	$\mathrm{S}(5)-\mathrm{Rh}(3)-\mathrm{S}(6)$	86.82(8)
$\mathrm{S}(2)-\mathrm{Rh}(1)-\mathrm{S}(6)$	97.49(8)	$\mathrm{S}(5)-\mathrm{Rh}(3)-\mathrm{S}(1)$	96.49(8)
$\mathrm{S}(1)-\mathrm{Rh}(1)-\mathrm{S}(6)$	77.41(8)	$\mathrm{S}(6)-\mathrm{Rh}(3)-\mathrm{S}(1)$	77.30(8)
S(3)-Rh(2)-S(4)	86.84(8)	$\mathrm{S}(8)-\mathrm{Rh}(4)-\mathrm{S}(7)$	86.94(8)
$\mathrm{S}(3)-\mathrm{Rh}(2)-\mathrm{S}(7)$	96.48(8)	$\mathrm{S}(8)-\mathrm{Rh}(4)-\mathrm{S}(4)$	97.39(8)
$\mathrm{S}(4)-\mathrm{Rh}(2)-\mathrm{S}(7)$	77.13(8)	$\mathrm{S}(7)-\mathrm{Rh}(4)-\mathrm{S}(4)$	76.94(8)
Bond Lengths (\AA) for [3]			
$\mathrm{Rh}(1)-\mathrm{S}(1)$	2.245(2)	$\mathrm{Ru}(1)-\mathrm{S}(3)$	2.380(2)
$\mathrm{Rh}(1)-\mathrm{S}(2)$	2.260(2)	$\mathrm{Ru}(1)-\mathrm{S}(4)$	2.388(2)
$\mathrm{Rh}(2)-\mathrm{S}(3)$	2.263(2)	$\mathrm{S}(1)-\mathrm{C}(1)$	$1.764(7)$
$\mathrm{Rh}(2)-\mathrm{S}(4)$	2.271(2)	$\mathrm{S}(2)-\mathrm{C}(2)$	1.746 (8)
$\mathrm{Rh}(2)-\mathrm{Ru}(1)$	2.8397(9)	S(3)-C(1)	1.750 (7)
$\mathrm{Ru}(1)-\mathrm{C}(1)$	2.223(7)	S(4)-C(2)	1.728(7)
$\mathrm{Ru}(1)-\mathrm{C}(2)$	2.263(70	$\mathrm{C}(1)-\mathrm{C}(2)$	1.423(9)
Bond Angles (deg) for [3]			
S(1)-Rh(1)-S(2)	89.82(8)	$\mathrm{S}(3)-\mathrm{Rh}(2)-\mathrm{S}(4)$	87.80(8)
Bond Lengths (\AA) for [4]			
$\mathrm{Rh}(1)-\mathrm{C}(2)$	2.24(3)	Rh(5)-S(3)	2.517(8)
$\mathrm{Rh}(1)-\mathrm{C}(1)$	2.26(3)	Rh(6)-S(7)	$2.376(8)$
$\mathrm{Rh}(2)-\mathrm{S}(2)$	2.376(8)	$\mathrm{Rh}(6)-\mathrm{S}(8)$	2.447 (8)
$\mathrm{Rh}(2)-\mathrm{S}(1)$	$2.394(7)$	Rh(6)-S(4)	2.500(8)
$\mathrm{Rh}(2)-\mathrm{S}(8)$	2.470(7)	$\mathrm{S}(1)-\mathrm{C}(1)$	1.75(3)
$\mathrm{Rh}(3)-\mathrm{S}(4)$	2.357(8)	S(2)-C(2)	1.78 (3)
$\mathrm{Rh}(3)-\mathrm{S}(3)$	2.450(8)	S(3)-C(1)	1.72(3)
$\mathrm{Rh}(3)-\mathrm{S}(7)$	2.456(7)	S(4)-C(2)	1.73(3)
$\mathrm{Rh}(4)-\mathrm{C}(3)$	2.23(2)	S(5)-C(3)	1.81(3)
$\mathrm{Rh}(4)-\mathrm{C}(4)$	2.24(2)	S(6)-C(4)	1.73(3)
$\mathrm{Rh}(4)-\mathrm{S}(5)$	2.369 (8)	S(7)-C(3)	1.75 (3)
$\mathrm{Rh}(4)-\mathrm{S}(6)$	2.423(8)	$\mathrm{S}(8)-\mathrm{C}(4)$	1.75 (3)
$\mathrm{Rh}(5)-\mathrm{S}(5)$	2.351(8)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.45(3)
$\mathrm{Rh}(5)-\mathrm{S}(6)$	$2.403(8)$	$\mathrm{C}(3)-\mathrm{C}(4)$	1.39(3)
Bond Angles (deg) for [4]			
$\mathrm{S}(2)-\mathrm{Rh}(2)-\mathrm{S}(1)$	78.4(3)	$\mathrm{S}(5)-\mathrm{Rh}(5)-\mathrm{S}(6)$	77.7(3)
$\mathrm{S}(2)-\mathrm{Rh}(2)-\mathrm{S}(8)$	85.1(3)	$\mathrm{S}(5)-\mathrm{Rh}(5)-\mathrm{S}(3)$	85.4(3)
$\mathrm{S}(1)-\mathrm{Rh}(2)-\mathrm{S}(8)$	97.7(3)	$\mathrm{S}(6)-\mathrm{Rh}(5)-\mathrm{S}(3)$	98.4(2)
$\mathrm{S}(4)-\mathrm{Rh}(3)-\mathrm{S}(3)$	87.2(2)	$\mathrm{S}(7)-\mathrm{Rh}(6)-\mathrm{S}(8)$	86.4(2)
S(4)-Rh(3)-S(7)	80.9(3)	$\mathrm{S}(7)-\mathrm{Rh}(6)-\mathrm{S}(4)$	79.7(3)
$\mathrm{S}(3)-\mathrm{Rh}(3)-\mathrm{S}(7)$	99.4(3)	$\mathrm{S}(8)-\mathrm{Rh}(6)-\mathrm{S}(4)$	101.8(2)
$\mathrm{S}(5)-\mathrm{Rh}(4)-\mathrm{S}(6)$	77.0(3)		

distances of $2.384 \AA$ are similar to those found in cationic thiophene complexes such as $\left(\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{4} \mathrm{R}_{4} \mathrm{~S}\right)^{2+} .{ }^{16}$ The Rh - S distances for the π-bonded $\mathrm{RhS}_{2} \mathrm{C}_{2}$ ring are $0.02 \AA$ longer than the other pair of $\mathrm{Rh}-\mathrm{S}$ distances on average. The C-C distance of $1.423 \AA$ suggests multiple bonding. It is virtually impossible to distinguish Rh vs Ru by crystal lographic methods, but the proposed structure is reasonable in view of the great arenophilicity of $\mathrm{CpRu}^{+} .{ }^{17}$ This structure is further supported by the ${ }^{13}$ C NMR spectrum of this compound which shows resonances for the $\mathrm{C}_{2} \mathrm{~S}_{4}$ without coupling to ${ }^{103} \mathrm{Rh}(\mathrm{S}=1 / 2$), thereby indicating that it is the Ru which is π-bonded to the $\mathrm{C}_{2} \mathrm{~S}_{4}$.

[^3]

Figure 4. Structure of 4 showing 50% probability ellipsoids and atom labeling scheme. Cp* atom ellipsoids omitted and bonds between moieties shown as dotted lines for clarity.
$\mathbf{C p}{ }_{2} \mathbf{R} \mathbf{h}_{2}\left(\mathbf{C}_{2} \mathbf{S}_{\mathbf{4}}\right)$ as $\mathbf{a} \pi$-Ligand for $\mathbf{C} \mathbf{p}{ }^{*} \mathbf{R} \mathbf{h}^{2+}$. In this third and final example, we investigated the binding of the dicationic $12 e^{-}$unit $\mathrm{Cp}^{*} \mathrm{Rh}^{2+}$ to $\mathbf{1}$. Treatment of a solution of 1 with 1 equiv of $\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{MeCN}_{3}\right] \text { (} \mathrm{PF}_{6}\right)_{2}$ rapidly afforded dark purple $\left[\mathrm{Cp}^{*} \mathrm{Rh}_{6}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)_{2}\right]^{4+}$ (4) (eq 3). We also prepared the derivative with $\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}$ in

$$
\begin{align*}
& 2\left[\mathrm{Cp}^{*} \mathrm{Rh}\left(\mathrm{NCMe}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}+\right. \\
& 2 \mathrm{Cp}_{2} \mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right) \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \underset{-6 \mathrm{MeCN}}{ }\left[\mathrm{Cp}_{6}^{*} \mathrm{Rh}_{6}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{4} \tag{3}\\
& {[4]\left(\mathrm{PF}_{6}\right)_{4}}
\end{align*}
$$

place of $\mathrm{Cp}{ }^{*}{ }^{1}{ }^{\mathrm{H}}$ NMR analysis of $\mathbf{4}$ revealed three $\mathrm{Cp} *$ signals, as in the case of 3 . The corresponding derivative with $\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}$ in place of $\mathrm{Cp} *$ showed a similar pattern. The ESI-MS analysis of $\mathbf{4}$ was supportive of our assignments, showing, inter alia, a strong signal for $\left\{\left[C^{*} \sigma^{-}\right.\right.$ $\left.\left.\mathrm{Rh}_{6}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{3}\right\}^{+}$at $\mathrm{m} / \mathrm{z}=2166$.

Crystallographic analysis of $\mathbf{4}$ revealed a relatively complex hexametallic structure (Figure 4). The structure of 4 can be viewed as a dimer of the trimetallic units in $\mathbf{3}$. In contrast to $\mathbf{3}$, however, there are no direct $\mathrm{M}-\mathrm{M}$ bonds: the additional $\mathrm{Cp}^{*} \mathrm{Rh}^{2+}$ units in $\mathbf{4}$ are bonded via an η^{4}-interaction to the $\mathrm{Cp}^{*} \mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)$ core. Examples of $\eta^{4}: \eta^{2}$-dithiolene complexes are known. ${ }^{18-20}$ In 4, the $\left[\mathrm{Cp}^{*}{ }_{3} \mathrm{Rh}_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{2+}$ subunits, which are otherwise isoel ectronic with $\mathbf{3}$, dimerize, via a pattern similar tothat found in 2. ThetwoS atoms inthe $\left[\mathrm{Cp}_{3} \mathrm{Rh}_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{2+}$ that are not π-bonded to the added $\mathrm{Cp} * \mathrm{Rh}$ center are the atoms that bridge the two moieties. Thus, in 4, all eight sulfur atoms are triply bridging (μ_{3}), each being bound to carbon and two Rh centers. As in 3, the $\mathrm{S}_{2} \mathrm{C}-$ CS_{2} distance of $1.42 \AA$ is between a single and a double bond distance. The $\mathrm{C}_{2} \mathrm{~S}_{4}$ groups in $\mathbf{4}$ are relatively planar, but unlike the situation in $\mathbf{2}$ and $\mathbf{3}$, one pair of

[^4]Scheme $\mathbf{2 a}^{\text {a }}$

1
${ }^{\text {a }}$ Cp*'s omitted for clarity.

Figure 5. Partial structures of 2, 3, and $\mathbf{4}$ without $\mathrm{Cp}{ }^{*} \mathrm{~s}$ showing 50\% probability ellipsoids and deviation from planarity.

Rh atoms is strongly displaced ($1.53 \AA$) from the $\mathrm{C}_{2} \mathrm{~S}_{4}$ planes (Figure 5).

Summary and Conclusions

Complexes of $\mathrm{C}_{2} \mathrm{~S}_{4}$ ligands have been known for many years, but there is little structural di versity in this class of compounds. Prior to our work, all $\mathrm{C}_{2} \mathrm{~S}_{4}$ complexes exhibit the κ_{2}, κ_{2}-bridging interactions with the exception of $\mathrm{Fe}_{4}(\mathrm{CO})_{12}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)$.9,21 This paper demonstrates the rich structural chemistry possible for the $\mathrm{C}_{2} \mathrm{~S}_{4}$ ligand; the four bonding modes are presented in Scheme 2. The results demonstrate the power of the half-sandwich organometallic reagents in exploring the chemistry of new ligands.

The trend observed in this work can be rationalized in the following qualitative but self-consistent manner.

[^5]

3

The ease of oxidation of $\mathbf{1}$ establishes its electron-rich character. As an ethylenetetrathiolato derivative, $\mathbf{1}$ is stabilized by π-donation from the negatively polarized sulfur atoms to the $16 \mathrm{e}^{-} \mathrm{Rh}$ centers. When such complexes are oxidized, orbitals contract and the π-donor ability of the ethylenetetrathiolato ligand is diminished. To compensate for the weakened S to Rh π-interaction, the metal centers in $\mathbf{1}^{+}$adopt a more classical structure based on σ-Rh-S interactions, which leads to dimerization of $\mathbf{1}^{+}$to give $\mathbf{2}$.
The electron-rich character of the $\mathrm{Rh}_{2} \mathrm{C}_{2} \mathrm{~S}_{4}$ core in $\mathbf{1}$ is further established by its Lewis basicity toward the $\mathrm{Cp} * \mathrm{Ru}^{+}$and Cp*Rh ${ }^{2+}$ centers. In the former case, the π-interaction is equivalent to that in $\mathrm{Cp} * \mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}\right)^{+}$ complexes. ${ }^{22,23}$ In contrast, the tetracationic all-Rh derivative features no metal-metal bonding, attributable to the relatively unextended nature of the d orbitals on $\mathrm{Rh}(I I I)$. The η^{4}-interaction diminishes the S to Rh π-bonding within the $\mathrm{Rh}_{2} \mathrm{C}_{2} \mathrm{~S}_{4}$ core, resulting in dimerization as in the case of $\mathbf{1}^{+}$.

Because $\mathbf{2}$ is diamagnetic, it is clear that the oddelectron $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{+}$subunits are electronically coupled. The crystallographic results show that this coupling does not occur by metal-metal bonding. The dimer structure found for $\mathbf{2}$ is relatively common for bis(dithiolene) complexes, ${ }^{24}$ e.g., $\mathrm{Fe}_{2}(\mathrm{mnt})_{4}{ }^{2-}$ and $[\mathrm{Cp} * \mathrm{Rh}$ (mnt) $]_{2}$ (mnt $=$ maleonitriledithiolate). ${ }^{25,26}$ The effects that lead to dimerization are related to the ability of the dithiolene backbone to disperse charge, minimizing Coulombic repulsion, e.g., monomeric ${ }^{27} \mathrm{Co}\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}\right)_{2}{ }^{-}$ vs dimeric ${ }^{28} \mathrm{CO}_{2}\left(\mathrm{~S}_{2} \mathrm{C}_{6} \mathrm{Cl}_{4}\right)_{4}{ }^{2-}$.

Experimental Section

See previous papers from this group for the description of materials and methods. ${ }^{29}$ We previously prepared $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2} \mathrm{C}_{2} \mathrm{~S}_{4}$ via our recently reported chemical synthesis. ${ }^{2}$ Further experimentation shows, however, that electrosynthesis, originally reported in some detail by J eroschewski, ${ }^{30}$ is a very reliable route to gram quantities of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2} \mathrm{C}_{2} \mathrm{~S}_{4}$. The preparations of $\mathrm{Cp}_{2} \mathrm{Rh}_{2} \mathrm{Cl}_{4},{ }^{31}\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2},{ }^{31}$ and $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right]-$ $\mathrm{PF}_{6}{ }^{32}$ have been well described.

[^6]Table 2. Crystallographic Data ${ }^{\text {afor }}$ Compounds Containing [2], [3], and [4]

	[2] $\left(\mathrm{BPh}_{4}\right)_{2} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	[3]PF 6	[4] $\left(\mathrm{BF}_{4}\right)_{4} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
empirical formula formula weight	$\begin{aligned} & \mathrm{C}_{95} \mathrm{H}_{106} \mathrm{~B}_{2} \mathrm{C}_{16} \mathrm{Rh}_{4} \mathrm{~S}_{8} \\ & 2150.24 \end{aligned}$	$\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~F}_{6} \mathrm{PRh}_{2} \mathrm{RuS}_{4}$ 1009.781	$\begin{aligned} & \mathrm{C}_{68} \mathrm{H}_{98} \mathrm{~B}_{4} \mathrm{C}_{18} \mathrm{~F}_{16} \mathrm{Rh}_{6} \mathrm{~S}_{8} \\ & 2420.24 \end{aligned}$
crystal system	monoclinic	monoclinic	monoclinic
space group	$\mathrm{P} 21 / \mathrm{c}$	C2/c	P21/c
Z	4	8	
a, A	33.6441(12)	28.7077(9)	22.3241 (5)
b, Å	b11.9721(4)	11.8550(6)	19.5617(2)
c, Å	26.4933(9)	22.9939(11)	21.5316(5)
α	90°	90°	90°
β	$112.6430(10)^{\circ}$	104.806(2) ${ }^{\circ}$	102.6290(10) ${ }^{\circ}$
γ	90°	90°	90°
volume	9848.7(6) \AA^{3}	$7565.7 \AA^{3}$	9175.3(3) \AA^{3}
calculated density	$1.450 \mathrm{~g} / \mathrm{cm}^{3}$	$1.773 \mathrm{~g} / \mathrm{cm}^{3}$	$1.752 \mathrm{~g} / \mathrm{cm}^{3}$
absorption coefficient	$1.034 \mathrm{~mm}^{-1}$	$1.572 \mathrm{~mm}^{-1}$	$1.540 \mathrm{~mm}^{-1}$
θ range for data collection	$1.54-25.00^{\circ}$	$1.83-25.05^{\circ}$	$1.40-20.00^{\circ}$
goodness-of-fit on F^{2}	1.090	1.076	1.010
final R indices ${ }^{\text {b }}$	$\mathrm{R} 1=0.0737$	$\mathrm{R} 1=0.0742$	$\mathrm{R} 1=0.0962$
[$1>2 \sigma(1)]$	$\mathrm{wR} 2=0.1272$	$w R 2=0.1599$	$\mathrm{wR} 2=0.2337$

${ }^{\text {a }}$ Obtained with graphite-monochromatized $\operatorname{Mo} \mathrm{K} \alpha\left(\lambda=0.71073 \AA\right.$) radiation. ${ }^{\mathrm{b}} \mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| ; \mathrm{wR} 2=\left\{\Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}{ }^{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \sum \mathrm{w}\left(\mathrm{Fo}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$.
$\mathbf{C} \mathbf{p}_{\mathbf{2}} \mathbf{R} \mathbf{h}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\left(\mathbf{C}_{\mathbf{2}} \mathbf{S}_{\mathbf{4}}\right), \mathbf{1} \mathbf{C l}_{\mathbf{2}}$. To a stirred slurry of $0.22 \mathrm{~g}(0.36$ mmol) of $\mathrm{Cp}^{*} \mathrm{Rh}_{2} \mathrm{Cl}_{4}$ in 20 mL of MeOH was added a solution of $0.17 \mathrm{~g}(0.40 \mathrm{mmol})$ of $\left(\mathrm{NEt}_{4}\right)_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)^{12}$ in 20 mL of MeOH . The slurry immediately turned from red-orange to dark green, and after $\sim 1 \mathrm{~min}$, much precipitation appeared. After 5 min , sol vent was removed under reduced pressure. The dark green solid was washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ and dried in air. Yield: 0.19 g (76\%). Anal. Calcd (found) for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{Cl}_{2}-$ $\mathrm{Rh}_{2} \mathrm{~S}_{4}: \mathrm{C}, 37.78$ (37.48); H, 4.37 (4.32). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 1.73\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 9.33$ $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right), 100.27\left(\mathrm{Me}_{5} \mathrm{C}_{5}, \mathrm{~J}\right.$ Rh-c $\left.=6.9 \mathrm{~Hz}\right), 234.71\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right) . \mathrm{UV}-$ vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 340,446,656 \mathrm{~nm}$.
$\mathbf{C p} \mathbf{N}_{2} \mathbf{R} \mathbf{h}_{2}\left(\mathbf{C}_{2} \mathbf{S}_{4}\right)$, 1. To a stirred slurry of $0.18 \mathrm{~g}(0.26 \mathrm{mmol})$ of $\mathrm{Cp}^{*}{ }_{2} \mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)$ in 30 mL of THF under an Ar atmosphere was added $0.60 \mathrm{~mL}(0.60 \mathrm{mmol})$ of a 1.0 M solution of LiBHEt_{3} in THF. After ~ 1 min, the slurry turned from dark green to dark blue. Solvent was removed under reduced pressure to $\sim 5 \mathrm{~mL}$ after 7.5 h . Addition of 50 mL of hexane precipitated a dark blue solid, which was washed with $5 \times 10 \mathrm{~mL}$ of MeOH and 10 mL of $\mathrm{Et}_{2} \mathrm{O}$. Yield: 88 mg (55\%). Anal. Calcd (found) for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{Rh}_{2} \mathrm{~S}_{4}: \mathrm{C}, 42.04$ (41.85); H , 4.81 (4.85). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 1.95\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 10.79\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right), 97.37\left(\mathrm{Me}_{5} \mathrm{C}_{5}, \mathrm{~J}{ }_{\mathrm{Rn}-\mathrm{c}}=6.9 \mathrm{~Hz}\right), 169.45\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 688 \mathrm{~nm}$.
$\left[C_{p}{ }_{4} \mathbf{R} \mathbf{h}_{4}\left(\mathbf{C}_{2} \mathbf{S}_{4}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}, \mathbf{2}\left(\mathrm{BF}_{4}\right)_{2}$. A dark blue solution of $0.0541 \mathrm{~g}(0.086 \mathrm{mmol})$ of $\mathbf{1}$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to a dark blue solution of $0.0271 \mathrm{~g}(0.086 \mathrm{mmol})$ of $\left\{\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right] \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\} \mathrm{BF}_{4}{ }^{15}$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, resulting in an immediate color change to dark brown. After 30 min , no further color change was apparent and solvent volume was reduced in vacuo to $\sim 5 \mathrm{~mL}$. Addition of 100 mL of dry, degassed $\mathrm{Et}_{2} \mathrm{O}$ yielded a dark brown solid, which was collected by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried in air. Yield: 0.0536 $\mathrm{g}(87 \%)$. Anal. Calcd (found) for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Rh}_{4} \mathrm{~S}_{8}$: C, 36.94 (36.69); $\mathrm{H}, 4.23$ (4.21). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\delta 1.76$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 380,416,516 \mathrm{~nm}$. ESI-MS: 1343 ([Cp*4$\left.\left.\mathrm{Rh}_{4}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)^{+}\right)$.
$\left[C^{2}{ }_{4} \mathbf{R h}_{4}\left(\mathrm{C}_{2} \mathbf{S}_{4}\right)_{\mathbf{2}}\right]\left(\mathrm{BPh}_{4}\right)_{2}, \mathbf{2}\left(\mathrm{BPh}_{4}\right)_{\mathbf{2}}$. A solution of 0.017 g (0.05 mmol) of NaBPh_{4} in 5 mL of MeOH was added to a dark brown solution of $0.0215 \mathrm{~g}(0.02 \mathrm{mmol})$ of $\mathbf{2}\left(\mathrm{BF}_{4}\right)_{2}$ in 10 mL of MeOH . A brown precipitation appeared immediately. The reaction was filtered and washed with $2 \times 20 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ and $3 \times 20 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$ and dried in air. Yield: $0.229 \mathrm{~g}(92 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.3(16 \mathrm{H}), 7.0(16 \mathrm{H}), 6.8(8 \mathrm{H})$, $1.71(59 \mathrm{H})$.
[Cp* $\left.\mathbf{3}^{\mathbf{R}} \mathbf{h}_{\mathbf{2}} \mathbf{R u}\left(\mathbf{C}_{2} \mathbf{S}_{4}\right)\right] \mathbf{P F}_{6}, \mathbf{3 P F}_{6}$. To a yellow slurry of 0.0406 $\mathrm{g}(0.080 \mathrm{mmol})$ of $\left[\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{PF}_{6}$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
was added a dark blue solution of $0.0506 \mathrm{~g}(0.080 \mathrm{mmol})$ of $\mathbf{1}$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, resulting in a dark purplered solution within a few minutes. After $2 \mathrm{~h}, 10 \mathrm{~mL}$ of hexanes was added to the reaction, and the solvent volume was reduced to about 10 mL under reduced pressure. A dark purple crystalline solid was collected and washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in air. Yield: 0.0670 g (84\%). Anal. Calcd (found) for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~F}_{6} \mathrm{PRh}_{2} \mathrm{RuS}_{4}$: C, 38.06 (37.66); H, 4.49 (4.40). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$): δ 1.95, 1.87, 1.61 (equal intensity singlets for Cp^{*} 's). ${ }^{13} \mathrm{C}$ NMR ($750 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 10.5,10.7,11.2\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) ; 94.3(\mathrm{~s}), 99.7$ (d), 100.0 (d) $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) ; 127.9$ (s) $\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 446$, 590 nm . FAB-MS: 865.1 ([Cp* $\left.\left.{ }_{3} \mathrm{Rh}_{2} R u\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{+}\right)$.
[Cp* $\mathbf{6}_{\mathbf{R}} \mathbf{h}_{\mathbf{6}}\left(\mathbf{C}_{\mathbf{2}} \mathbf{S}_{\mathbf{4}}\right)_{\mathbf{2}}$] $\left.\mathbf{P F}_{\mathbf{6}}\right)_{\mathbf{4}}, \mathbf{4}\left(\mathrm{PF}_{\mathbf{6}}\right)_{\mathbf{4}}$. A mixture of 0.0231 g $(0.035 \mathrm{mmol})$ of $\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ and $0.0217 \mathrm{~g}(0.035$ mmol) of $\mathbf{1}$ was dissol ved in 35 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a dark red solution. After 2 h of stirring, the reaction was filtered through Celite in air, and the filter cake was washed with $\mathrm{CH}_{2}-$ Cl_{2}. The red filtrate was diluted with 20 mL of hexanes, and the solution volume was reduced in vacuo to $\sim 10 \mathrm{~mL}$ to give purple-black crystals. Yield: 0.0288 g (72\%). Anal. Calcd (found) for $\mathrm{C}_{64} \mathrm{H}_{90} \mathrm{~F}_{24} \mathrm{P}_{4} \mathrm{Rh}_{6} \mathrm{~S}_{8}: \mathrm{C}, 33.23$ (33.62); $\mathrm{H}, 3.92$ (3.94). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 2.07,1.96,1.75$ (equal intensity singlets for Cp*'s). UV-vis ($\mathrm{CH}_{3} \mathrm{CN}$): 262, 388, 534 nm . ESIMS: $2166\left(\left[4\left(\mathrm{PF}_{6}\right)_{3}\right]^{+}\right), 867\left(\left[\mathrm{Cp}_{3} \mathrm{Rh}_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{+}\right)$, and $433\left(\left[\mathrm{Cp}^{*} 3^{-}\right.\right.$ $\left.\left.R h_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{4}\right)\right]^{2+}\right)$.

Crystallographic Analysis of 2. The data crystal, a red plate, was mounted using Paratone oil with the ($\left.\begin{array}{l}1 \\ 0\end{array}\right)$ scattering planes roughly normal to the spindle axis. Data were collected on a Siemens Smart CCD detector using a $0.25^{\circ} / \mathrm{s} \omega$ scan width and a 0.333 s scan time. Of 51660 reflections collected for θ ranging from 1.54 to $25.00^{\circ}, 17327$ were independent with $\mathrm{R}_{\text {int }}=0.1086$, after Platon Squeeze removed two $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules. Details of the crystal data and refinement are given in Table 2.

The structure was solved by direct methods and refined using the SHELX suite of programs. ${ }^{33-35}$ The initial solution located the C, S, and Rh atoms of the cationic core as well as some of the $\mathrm{Cp}^{*} \mathrm{C}$ atoms and most of the BPh_{4}^{-}atoms. Further refinement cycles allowed the location of the rest of the atoms as well as the presence of solvent molecules. All nonsolvent molecules were refined anisotropically. The largest residual peak ($0.86 \mathrm{e}^{-} / \AA^{3}$) was located $0.973 \AA \AA$ from Rh4. All Cp^{*} rings were refined as variable metric rigid groups.

Present in the asymmetric unit were three molecules of CH_{2-} Cl_{2}. The first (C93) was ordered and refined anisotropically.

[^7]The other two (C94 and C96) were each disordered over two positions with occupancies of 50/50 for the C94/C95 pair and 80/20 for the C96/C97 pair. Also present were an additional two highly disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules. Because of the high disorder and overlapping positions of these two solvent molecules, Platon-99 was used to remove the electron density due to these molecules.

Crystallographic Analysis of 3. The data crystal, a dark red plate, was mounted using Paratone oil with the (010) scattering planes roughly normal to the spindle axis. All crystals examined were severely twinned with a pseudo mirror normal to the a-axis. Two orientations were measured and integrated for the data crystal. Intensities were corrected for absorption by integration and then filtered by position and relative intensity to omit partially overlapped data. Data were collected on a Siemens Smart CCD detector using $0.25^{\circ} \omega$ frames scanned for 20 s per frame. A total of 26949 reflections were collected from both orientations for θ ranging from 1.5 to 25.0°. Details of the crystal data and refinement are given in Table 2.

The structure was solved by direct methods and refined using the SHELX suite of programs. ${ }^{33-35}$ The initial solution allowed the location of the atoms of the $\mathrm{PF}_{6}{ }^{-}$anion and the cationic core with the exception of some of the Cp* C atoms. Further refinement cycles allowed the location of the rest of the atoms. The largest residual peak ($1.73 \mathrm{e}^{-} / \AA^{3}$) was located $1.6 \AA$ from a methyl hydrogen on C32. All non-H atoms were refined anisotropically. The Cp* rings were refined as variable metric rigid groups.

Crystallographic Analysis of 4. The data crystal, a red plate, was mounted using Paratone oil with the (1 200) scattering planes roughly normal to the spindle axis. Data were coll lected on a Siemens Smart CCD detector using $0.3^{\circ} / \mathrm{s}$ ω scan width and a 0.333 s scan time. A total of 29903 reflections were collected for θ ranging from 1.40 to 20.00°, 8548 were independent with $\mathrm{R}_{\text {int }}=0.1941$. Details of the crystal data and refinement are given in Table 2.
The structure was solved by direct methods and refined using the SHELX suite of programs. ${ }^{33-35}$ The initial solution allowed the location of the C, S, and Rh atoms of the cationic core with some of the $\mathrm{Cp}^{*} \mathrm{C}$ atoms and two of the BF_{4}^{-}anions. Further refinement cycles allowed the location of the rest of
the atoms as well as two more anions and solvent molecules. One reflection (1 10) was omitted due to being truncated by the beamstop. The largest residual peak ($3.58 \mathrm{e}^{-} / \AA^{3}$) was located 1.683 Å from Rh1.
All Cp* rings were refined isotropically as fixed groups. The Cp* bound to Rh1 was disordered 53/47 over two orientations. The isotropic displacement parameter for all carbon atoms of the disordered $\mathrm{C} \mathrm{p}^{*}$ were restrained to be equal.

Four molecules of BF_{4}^{-}are present in the asymmetric unit. Only one (B1) is ordered. The other three are disordered over two positions with occupancies of 66/34 for the B2/B2' pair, $70 / 30$ for the $B 3 / B 3^{\prime}$ pair, and $56 / 44$ for the $B 4 / B 44^{\prime}$ pair. Because of the poor quality data, all of the $\mathrm{BF}_{4}{ }^{-}$counterions were refined isotropically and the isotropic displacement parameter was restrained to be equal for all atoms of each ion/disordered pair. The B-F bond length was restrained to 1.365(1) Å.

Also present are four molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent. Only one of these (C70) was not disordered. Two of the other solvent molecules were disordered over two positions with occupancies of 77/24 for the C65/C66 pair and 70/30 for the C71/C72 pair. The remaining $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was disordered over three positions with occupancies of 42/48/10 for the C67/C68/C69 set. Because of the poor quality of the data set, all solvent molecules were refined isotropically and the isotropic displacement parameter was restrained to be equal for equivalent atoms of each molecule/disordered set. TheC-Cl bond length was restrained to 1.779(1) \AA and the $\mathrm{Cl}-\mathrm{Cl}$ distance was restrained to 2.994(1) Å.

Acknowledgment. This research was supported by the Department of E nergy through DEF G02-96E R45439 and by NSF. G.A.H. is supported through a Hertz Fellowship.

Supporting Information Available: Tables of atomic coordinates, selected bond distances and angles, and thermal parameters. This material is available free of charge via the Internet at http://pubs.acs.org.

OM000521V

[^0]: (1) Mueller-Westerhoff, U. T.; Vance, B.; Wilkinson, G.; Gillard, R. D.; McCleverty, J. A. Comp. Coord. Chem. Pergamon: Oxford, 1987; pp 595-631.
 (2) Breitzer, J . G.; Chou, J .-H.; Rauchfuss, T. B. Inorg. Chem. 1998, 37, 2080-2083.
 (3) Reynolds, J. R.; Lillya, C. P.; Chien, J. C. W. Macromolecules 1987, 20, 1184-1191.
 (4) Harris, H. A.; Rae, A. D.; Dahl, L. F. J. Am. Chem. Soc. 1987, 109, 4739-4741.
 (5) Maj, J. J .; Rae, A. D.; Dahl, L. F. J. Am. Chem. Soc. 1982, 104, 4278-4280.
 (6) Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M.; Zanello, P. J . Am. Chem. Soc. 1987, 109, 185-98.
 (7) Yang, X.; Doxsee, D. D.; Rauchfuss, T. B.; Wilson, S. R. J . Chem. Soc., Chem. Commun. 1994, 821-822.

[^1]: (8) Pullen, A. E.; Zeltner, S.; Olk, R. M.; Hoyer, E.; Abboud, K. A.; Reynolds, J. R. Inorg. Chem. 1997, 36, 4163-4171.
 (9) Broadhurst, P. V.; J ohnson, B. F. G.; Lewis, J .; Raithby, P. R. J . Chem. Soc., Chem. Commun. 1982, 140-141.
 (10) Hansen, L. K.; Sieler, J.; Strauch, P.; Dietzsch, W.; Hoyer, E. Acta Chem. Scand. 1985, A 39, 571-591.
 (11) Reinhold: J.; Stich, G.; Strauch, P.; Benedix, R.; Sieler, J.; Hoyer, E. Z. Chem. 1987, 27, 29-30.
 (12) Dietzsch, W.; Strauch, P.; Hoyer, E. Coord. Chem. Rev. 1992, 121, 43-130.
 (13) Pullen, A. E.; Zeltner, S.; Olk, R. M.; Hoyer, E.; Abboud, K. A.; Reynolds, J. R. Inorg. Chem. 1996, 35, 4420-4426.
 (14) Holloway, G. A.; Rauchfuss, T. B. Inorg. Chem. 1999, 38, 30189.

[^2]: (15) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877-922.

[^3]: (16) Luo, S.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1992, 114, 8515.
 (17) Fagan, P. J.; Ward, M. J.; Calabrese, J. C. J . Am. Chem. Soc. 1989, 111, 1698-1719.

[^4]: (18) Lindner, E.; Butz, I. P.; Hoehne, S.; Hiller, W.; Fawzi, R. J . Organomet. Chem. 1983, 259, 99-117.
 (19) Hörnig, A.; Englert, U.; K oelle, U. J . Organomet. Chem. 1994, 464, C25-C28.
 (20) Rauchfuss, T. B.; Rodgers, D. P. S.; Wilson, S. R. J. Am. Chem. Soc. 1986, 108, 3114-5.

[^5]: (21) Hoyer, E. Comments Inorg. Chem. 1983, 2, 261.

[^6]: (22) Graf, D. D.; Day, N. C.; Mann, K. R. Inorg. Chem. 1995, 34, 1562-75.
 (23) Luo, S.; Rauchfuss, T. B.; Wilson, S. R. Organometallics 1992, 11, 3497-8.
 (24) Eisenberg, R. Prog. Inorg. Chem. 1970, 12, 295-369.
 (25) Hamilton, W. C.; Bernal, I. Inorg. Chem. 1967, 6, 2003-2008.
 (26) Don, M. J.; Yang, K. Y.; Bott, S. G.; Richmond, M. G. J. Organomet. Chem. 1997, 544, 15-21.
 (27) Gray, H. B.; Billig, E. J. Am. Chem. Soc. 1963, 85, 2019-2020.
 (28) Baker-Hawkes, M. J.; Dori, Z.; Eisenberg, R.; Gray, H. B. J. Am. Chem. Soc. 1968, 90, 4253-4259.
 (29) Goodman, J. T.; Rauchfuss, T. B. J . Am. Chem. Soc. 1999, 121, 5017-5022.
 (30) J eroschewski, P. Z. Chem. 1981, 21, 412.
 (31) White, C.; Y ates, A.; M aitlis, P. M. Inorg. Synth. 1992, 29, 228234.

[^7]: (33) Sheldrick, G. M., SAINT v5 and SHELXTL v5, Bruker AXS, 1998.
 (34) Sheldrick, G. M., SHELXS 86, University of Gottingen, 1986.
 (35) Sheldrick, G. M., SHELXL-97, University of Göttingen, 1997.

