Alkali metal-templated assembly of the tetrahedral cyanometallate cages $[M \subset Mo_4(\mu-CN)_6(CO)_{12}]^{5-}$ (M = Li, Na)

Stephen M. Contakes and Thomas B. Rauchfuss*

Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL 61801,USA. *E-mail: rauchfuz@uiuc.edu*

Received (in Irvine, CA, USA) 11th December 2000, Accepted 16th January 2001 First published as an Advance Article on the web 28th February 2001

Acetonitrile solutions of (mesitylene)Mo(CO)₃, 1.5 equiv. Et₄NCN, and 0.25 equiv M⁺ afford the inorganic tetrahedranes (Et₄N)₅[M \subset Mo₄(μ -CN)₆(CO)₁₂] (M = Na, Li), the strained nature of which is indicated by their ready reaction with CsO₃SCF₃ to give trigonal prismatic (Et₄N)₈[Cs- \subset Mo₆(μ -CN)₉(CO)₁₈].

We have reported that the cyanometallate box $[Cp*Rh]_4[Mo-(CO)_3]_4(\mu-CN)_{12}^{4-}$ selectively binds Cs^+ (*vs.* K⁺).¹ This mirrors behavior exhibited by solid state cyanometallates, which have been of interest for radiowaste separations.^{2,3} We have recently discovered that in cyanometallate cages with labile M–CN bonds, Cs⁺ and K⁺ promote the formation of trigonal prismatic, not cubic, cages, *e.g.* $[Cs \subset Mo_6(\mu-CN)_9(CO)_{18}]$.⁴ We now report that use of the smaller Na⁺ (*r*_{ionic} = 116 pm⁵) and Li⁺ (*r*_{ionic} = 90 pm) ions in place of Cs⁺ (*r*_{ionic} = 181 pm) and K⁺ (*r*_{ionic} = 152 pm) in the Mo–CO/CN⁻ system affords tetrahedral cages, a third member of the series $\{M \subset [Mo(\mu-CN)_{1.5}L_x]_n\}^{(1.5n-1)-}$. This result establishes that the alkali metal not only templates cage formation, but that *the size of the alkali metal ion determines the cage structure*. Of further interest, tetrahedral M₄(μ -CN)₆ cages are unprecedented within the area of cyanometallates.²

Treatment of acetonitrile solutions of (mesitylene)Mo(CO)₃ with 1.5 equiv. Et₄NCN in the presence of 0.25 equiv. NaSbF₆ gives a yellow solution from which golden crystals, analyzed as $(Et_4N)_5[Na \subset Mo_4(\mu-CN)_6(CO)_{12}]$ $(Na \subset T^{5-})$, can be precipitated in 77% yield.†‡ 159 MHz ²³Na NMR spectroscopy indicates that this reaction is complete within 1 h. The IR spectrum shows that the anion is rather electron rich (v_{CO} = 1997, 1876, 1745 cm⁻¹). X-Ray diffraction analysis revealed an anionic tetrahedrane with four Mo(CO)₃ vertices and six µ-CN edges (Fig. 1). Not unlike $[K \subset Mo_6(\mu-CN)_9(CO)_{18}]^{8-1}$ (K⊂TP⁸⁻),⁴ each Mo atom is octahedral with acute CN-Mo-CN angles (82.1°) and 90° C-Mo-CO angles. The Na+-C/N distance of ca. 2.56 Å is comparable to that in Na-alkyls.⁶⁻¹⁰ The Mo-CN linkages are bent with Mo-C/N-N/C bond angles of 165.9°. In the molecular triangle $\text{Re}_3(\mu-\text{CN})_3(\text{CO})_{12}$, the M–C–N angles are ca. 180° with most of the bending occurring at the ca. 135° M–N–C angles.¹¹ A similar situation may apply to Na \subset T⁵⁻ but the presence of four structurally similar linkage isomers, each of which can adopt four different orientations in the crystal structure, made this difficult to establish unambiguously. Evidence for the four different possible linkage isomers comes from ¹³C NMR spectroscopy (Fig. 2), which shows the predicted 16 signals in the µ-CN region. The Li+-containing tetrahedrane, $(Et_4N)_5[Li \subset Mo_4(\mu-CN)_6(CO)_{12}]$ $(Li \subset T^{5-})$, was prepared from (mesitylene)Mo(CO)₃, 1.5 equiv. Et₄NCN, and 0.25 equiv. LiO₃SCF₃.

The availability of two classes of cages of formula $M \subset [Mo(\mu-CN)_{1.5}(CO)_3]_n^{(1.5n-1)-}$ (M = Cs, K, n = 6 vs. M = Na, Li, n = 4) prompted a study of their interconversion. Cage interconversion is also relevant to cage assembly mechanisms, a topic that has only recently come under scrutiny.¹² The 233 MHz ⁷Li NMR spectrum of Li \subset T⁵⁻ in MeCN consists of a single signal at δ -0.28 (apparently the Na chemical shift is insensitive to the CN linkage isomerism). On addition of one

Fig. 1 Structure of the anion in $(Et_4N)_5[Na \subset Mo(\mu-CN)_6(CO)_{12}]$ ·4MeCN with thermal ellipsoids set at the 50% probability level. Selected average distances (Å) and angles (°): Mo–C/N 2.25, Mo–CO 1.93, Na–C/N 2.56, C/N–Mo–C/N 82.1, OC–Mo–CO 90.0; Mo–C/N–Mo 165.9.

equiv. of LiO₃SCF₃ to a MeCN solution of square (Et₄N)₄-[Cs⊂Mo₆(µ-CN)₉(CO)₁₈] (1),⁴ a broad signal at δ −1.8 as well as small amounts of Li⊂T^{5−} (Fig. 3) were observed. Upon adjusting the CN⁻:Mo(CO)₃ ratio to 1.5, the signal for Li⊂T^{5−} becomes dominant. Further Et₄NCN, however, degrades the Li⊂T^{5−} giving only Mo(CO)₃(CN)₃^{3−} and free Li^{+.4} Similar observations were obtained by ²³Na NMR spectroscopy for the formation of Na⊂T^{5−} from NaSbF₆ and 1. These results confirm the ready formation of the tetrahedrane when Mo(CO)₃, CN[−], and the alkali metal are present in the appropriate ratio.

Fig. 2 187.5 MHz ¹³C NMR spectrum of $(Et_4N)_5[Na \subset Mo(\mu-CN)_6(CO)_{12}]$ showing the 14 signals observed in the μ -CN region and breakdown of signals into groups attributable to the four linkage isomers.

Fig. 3 233.2 MHz ⁷Li NMR spectra illustrating the effect of Mo:CN ratio on cage synthesis (MeCN solutions): (a) 0.18 M LiO₃SCF₃; (b) 0.018 M (Et₄N)₅[Li \subset Mo(μ -CN)₆(CO)₁₂]; (c) 0.019 M (Et₄N)₄{[Mo(CO)₃(NC-Me)}]₄(CN)₄} and 0.019 M LiO₃SCF₃; and (d) 0.019 M (Et₄N)₄{[Mo(CO)₃(NC-Me)}]₄(CN)₄}, 0.019 M LiO₃SCF₃ and 0.038 M Et₄NCN.

We also examined the effect of alkali metal stoichiometry. Addition of one equiv. NaSbF₆ to a solution of Na \subset T⁵⁻ gave a broad ²³Na NMR signal for Na⁺ centered at δ –4.5 along with undiminished signal for Na \subset T⁵⁻, indicating that excess alkali metal does not degrade the cage. Using substoichiometric amounts of NaSbF₆ shows only formation of Na \subset T⁵⁻. Thus, alkali metal is required for cage formation, only the tetrahedral cage forms at low stoichiometry, and excess alkali metal does not affect cage formation.

Experiments involving mixed alkali metals clarified the relative thermodynamic and kinetic stabilities of the new families of CN-based cages. LiO3SCF3 has no effect on the 23Na spectrum of Na⊂T^{5−} whereas one equiv of NaSbF₆ converts $\hat{Li} \subset T^{5-}$ into Na $\subset T^{5-}$. This reaction is likely due to the better fit of the sodium ion within the cavity and may also be partially driven by the entropic advantage for encapsulation of $[Na(MeCN)_6]^+ vs. [Li(MeCN)_4]^{+.13,14}$ 7Li NMR measurements showed that one equiv. of CsO₃SCF₃ causes release of free Li⁺ from Li⊂T⁵⁻. Complementarily, 79 MHz ¹³³Cs NMR measurements showed that Cs⁺ converts both Na \subset T⁵⁻ and Li \subset T⁵⁻ predominantly into Cs⊂TP^{8−} (Scheme 1). Consistent with the greater stability of the larger cages, the ¹³³Cs NMR spectrum of $Cs \subset TP^{8-}$ is unaffected by the presence of Li⁺, Na⁺, and K⁺. The higher reactivity of the tetrahedral cages is attributed to the weakened M-NC bonding associated with strained Mo-C-N-Mo angles (vide supra).

The literature on tetrahedral cages is rapidly growing,^{15–18} although the previously reported cages are guided by the directionality and denticity of organic ligands, whereas in the present case only CN^- is the linker and guidance is provided by the size of the encapsulated ion.

This research was supported by the Department of Energy. We thank Dr Paul Molitor for assistance with the NMR measurements.

Notes and references

† Synthesis of $(Et_4N)_5[Na⊂Mo_4(\mu-CN)_6(CO)_{12}]$ (1). A solution of 156 mg (1.00 mmol) Et_4NCN in 15 mL MeCN was added dropwise to a stirred solution of 200 mg (0.666 mmol) (mesitylene)Mo(CO)_3 and 43 mg (0.167 mmol) NaSbF₆ in 10 mL MeCN. The resulting solution was allowed to stand for 18 h and then 100 mL Et_2O was added to precipitate the product as a yellow powder. The product was collected by filtration, washed twice with 10 mL portions of Et_2O , and dried under vacuum for 12 h. Yield 210 mg (77%). IR ($v_{C=x}$, KBr/cm⁻¹): 2089 (w), 1997 (vw), 1934 (m), 1876 (vs), 1745 (vs). Anal. Calc. (found) for $C_{58}H_{100}Mo_4NaN_{11}O_{12}$: C, 44.94 (45.02); H, 6.50 (6.62); Mo, 24.75 (24.53); Na, 1.48 (1.42); N, 9.94 (10.10)%. The Li derivative was prepared identically using LiOTf in place of NaSbF₆. Single crystals of **1** were grown from MeCN solutions by vapor diffusion using ether.

‡ *Crystal data* for 1: M = 1550.3, monoclinic, space group $P2_1/c$, a = 19.1292(16), b = 19.3643(16), c = 24.966(2) Å, $\beta = 96.764^\circ$, Z = 4, $D_c = 1.290$ Mg m⁻³, $\lambda = 0.71073$ Å, $\mu = 0.601$ mm⁻¹, R1 = 0.0735, wR2 = 0.1894, GoF = 1.0098.

CCDC 13795. See http://www.rsc.org/suppdata/cc/b0/b010192n/ for crystallographic data in .cif or other electronic format.

- 1 K. K. Klausmeyer, S. R. Wilson and T. B. Rauchfuss, J. Am. Chem. Soc., 1999, 121, 2705.
- 2 K. R. Dunbar and R. A. Heintz, Prog. Inorg. Chem., 1997, 45, 283.
- 3 J. T. Davis, S. K. Tirumala and A. L. Marlow, J. Am. Chem. Soc., 1997,
- 119, 5271.
 4 S. M. Contakes and T. B. Rauchfuss, *Angew. Chem., Int. Ed.*, 2000, 39, 1984.
- 5 J. A. Huheey, E. A. Keiter and R. L. Keiter, *Inorganic Chemistry: Principles of Structure and Reactivity*, Harper Collins, New York, 1993.
- 6 S. S. Al-Juaid, C. Eaborn, P. B. Hitchcock, K. Izod, M. Mallien and J. D. Smith, *Angew. Chem., Int. Ed. Engl.*, 1994, 33, 1268.
- 7 C. Eaborn, W. Clegg, P. B. Hitchcock, M. Hoppman, K. Izod, P. N. O'Shaugnessy and J. D. Smith, *Organometallics*, 1997, **16**, 4728.
- 8 P. B. Kitchcock, M. F. Lappert, W.-P. Leung, L. Diansheng and T. Shun, J. Chem. Soc., Chem. Commun., 1993, 1386.
- 9 C. Schade, P. v. R. Schleyer, M. Geissler and E. Weiss, *Angew. Chem.*, *Intl. Ed. Engl.*, 1986, 25, 1986.
- 10 H. Viebrock, U. Behrend and E. Weiss, Chem. Ber., 1994, 127, 1399.
- 11 F. Calderazzo, U. Mazzi, G. Pampaloni, R. Poli, F. Tisato and P. F. Zanazzi, *Gazz. Chim. Ital.*, 1989, **119**, 241.
- 12 M. D. Levin and P. J. Stang, J. Am. Chem. Soc., 2000, 122, 7428.
- 13 Y. Yokota, J. Young, V. G. Verkade and J. G. Verkade, Acta Crystallogr., Sect. C, 1999, 55, 196.
- 14 C. L. Raston, C. R. Whitaker and A. H. White, Aust. J. Chem., 1989, 42, 201.
- 15 R. L. Paul, S. M. Couchman, J. C. Jeffrey, J. A. McCleverty, Z. R. Reeves and M. D. Ward, J. Chem. Soc., Dalton Trans., 2000, 845.
- 16 D. L. Caulder and K. N. Raymond, Acc. Chem. Res., 1999, 32, 975.
- 17 S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100, 853.
- 18 K. Umenoto, K. Yamaguchi and M. Fujita, J. Am. Chem. Soc., 2000, 122, 7150.