# A New Synthesis of Tetrathiooxalate and Its Conversion to $C_3S_5{}^{2-}$ and $C_4S_6{}^{2-}$

# Jonathan G. Breitzer, Jun-Hong Chou, and Thomas B. Rauchfuss\*

School of Chemical Sciences and the Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

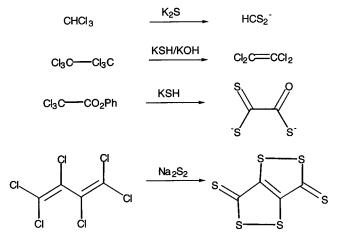
Received October 21, 1997

## Introduction

The synthesis of tetrathiooxalate  $(tto^{2-})$  is accomplished by the electrochemical reduction of  $CS_2$  over a liquid mercury cathode in the presence of a quaternary ammonium or phosphonium salt (eq 1).<sup>1</sup> As recounted by Hoyer,<sup>2</sup> attempted

$$2CS_2 \xrightarrow{2 V \text{ vs NHE}} (Et_4N)_2C_2S_4$$
(1)

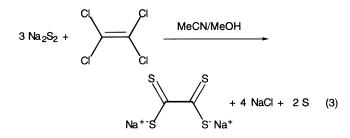
syntheses of  $tto^{2-}$  by the alkali metal reduction of  $CS_2$  results in formation of  $C_3S_5^{2-}$  according to eq 2.<sup>3</sup> Using electrochemi-


$$4Na + 4CS_2 \rightarrow Na_2CS_3 + Na_2C_3S_5 \tag{2}$$

cally produced tto<sup>2–</sup>, Reynolds and co-workers have synthesized several polymeric and oligomeric tto complexes, some of which are excellent electrical conductors.<sup>4</sup> Other C<sub>2</sub>S<sub>4</sub> complexes are known but these are usually prepared by the reductive coupling of CS<sub>2</sub> with low-valent-metal complexes, e.g. Cp<sub>2</sub>Ti(CO)<sub>2</sub>.<sup>5</sup> Such complexes are not true sources of the free tto<sup>2–</sup> moiety. Furthermore, it appears that many such compounds are best described as complexes of ethylenetetrathiolate, C<sub>2</sub>S<sub>4</sub><sup>4–</sup>. An intriguing but inefficient chemical route to tto involves the reaction of (Et<sub>4</sub>N)<sub>2</sub>S<sub>5</sub> with refluxing MeCN. A plausible intermediate in this process, dithioacetate (CH<sub>3</sub>CS<sub>2</sub><sup>-</sup>), also reacts with the polysulfide salt to produce tto<sup>2–</sup>.<sup>6</sup>

The lack of a convenient synthesis of  $tto^{2-}$  has limited study of this fundamental two-carbon building block.<sup>7</sup> The coordination chemistry of  $tto^{2-}$  also remains restricted in scope, despite the very intriguing results on its polymeric and oligomeric coordination compounds.<sup>4,8</sup> The fact that most tto complexes exhibit strong M····M interactions suggests that  $tto^{2-}$  would be a useful reagent in preparing multimetallic arrays, relevant to the prevailing interest in supramolecular chemistry, materials

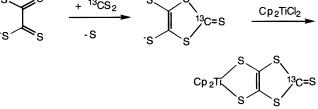
- (a) Jeroschewski, P. Z. Chem. 1981, 21, 412. (b) A review: Jeroschewski, P.; Hansen, P. Sulfur Rep. 1986, 7, 1.
- (2) Hoyer, E. Comments Inorg. Chem. 1983, 2, 261.
- (3) Reviews of C<sub>3</sub>S<sub>5</sub><sup>2-</sup> chemistry: Olk, R.-M.; Olk, B.; Dietzsch, W.; Kirmse, R.; Hoyer, E. *Coord. Chem. Rev.* **1992**, *117*, 99. Svenstrup, N. B.; Becher, J. *Synthesis* **1995**, 215.
- (4) Pullen, A. E.; Zeltner, S.; Olk, R.-M.; Hoyer, E.; Abboud, K. A.; Reynolds, J. R. *Inorg. Chem.* **1997**, *36*, 4163. Piotraschke, J.; Pullen, A. E.; Abboud, K. A.; Reynolds, J. R. *Inorg. Chem.* **1995**, *34*, 4011. Pullen, A. E.; Zeltner, S.; Olk, R.-M.; Hoyer, E.; Abboud, K. A.; Reynolds, J. R. *Inorg. Chem.* **1996**, *35*, 4420.
- (5) Harris, H. A.; Rae, A. D.; Dahl, L. F. J. Am. Chem. Soc. 1987, 109, 4739. Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M.; Zanello, P. J. Am. Chem. Soc. 1987, 109, 185.
- (6) Bacher, A. D.; Sens, I.; Müller, U. Z. Naturforsch. 1991, 47B, 702.
  (7) For a review of the older literature, see: Gattow, G.; Behrendt, W.
- Carbon Sulfides and Their Inorganic and Complex Chemistry; G. Thieme: Stuttgart, Germany, 1977.
- (8) Strauch, P.; Dietzsch, W.; Hoyer, E. Z. Chem. 1983, 23, 448.


# Scheme 1



science, and catalysis. Given this background as well as our recent familiarity with the sulfidation of chlorocarbons,<sup>9</sup> we undertook the synthesis of  $tto^{2-}$  by sulfidation of tetrachloro-ethylene. Prior work on the reaction of chlorocarbons and inorganic sulfide sources is summarized in the Scheme  $1.^{10-12}$  The conversion of chlorocarbons to chlorine-free products using inexpensive reagents such as alkali metal sulfides might be of some interest for the detoxification of organochlorine compounds.<sup>13</sup>

#### Results


**Synthesis of Tetrathiooxalate.** We found that  $tto^{2-}$  forms in good yield by the reaction of sodium persulfide with tetrachloroethylene in hot methanolic acetonitrile. The product was obtained as the methanol (but not ethanol)-soluble  $Et_4N^+$ salt. The conversion of the olefin to  $tto^{2-}$  involves formal oxidation of the carbon compound. The oxidizing equivalents are provided in the form of the persulfide anion  $S_2^{2-}$  (eq 3). In



practice, we found that the reaction of  $C_2Cl_4$  with 2 equiv of  $Na_2S_2$  was more efficient than that using a mixture of  $Na_2S$  and  $Na_2S_2$ , as might be expected on the basis of stoichiometry of the reaction. We confirmed that  $tto^{2-}$  does not react with  $C_2Cl_4$  under the conditions used for the synthesis of  $tto^{2-}$ . An occasional difficulty in our  $tto^{2-}$  synthesis arises from contamination of the (Et<sub>4</sub>N)<sub>2</sub>tto with NaCl, which was removed by

- (9) Chou, J.-H.; Rauchfuss, T. B. J. Am. Chem. Soc. 1997, 119, 4537. Chou, J.-H.; Rauchfuss, T. B. Z. Naturforsch., in press.
  (10) Reuter, U.; Gattow, G. Z. Anorg. Allg. Chem. 1976, 421, 143. Engler,
- (10) Reuter, U.; Gattow, G. Z. Anorg. Allg. Chem. 1976, 421, 143. Engler, R.; Gattow, G.; Dräger, M. Z. Anorg. Allg. Chem. 1972, 388, 229.
- (11) Richter, A. M.; Fanghänel, E. Sulfur Lett. 1985, 3, 25.
  (12) Stork, W.; Mattes, R. Angew Chem., Int. Ed. Engl. 1975, 14, 436 (Angew. Chem. 1975, 87, 452).
- (13) *Bioremediation of Chlorinated Solvents*; Hinchee, R. E., Leeson, A., Semprini, L., Eds; Battelle Press: Columbus, OH, 1995.

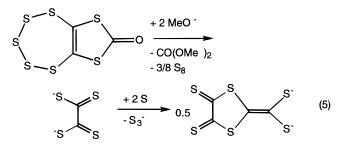
Scheme 2



recrystallization from MeCN. Overall, the requirement for anhydrous  $Na_2S_2$  is the chief disadvantage of this preparation; this salt can, however, be easily prepared on a 20 g scale via the direct reaction of Na and elemental sulfur in anhydrous ammonia.

We also synthesized  $tto^{2-}$  using hydrated Na<sub>2</sub>S<sub>2</sub>, prepared in situ from elemental sulfur and commercially available hydrated sodium sulfide ("Na<sub>2</sub>S•9H<sub>2</sub>O") in methanol. This convenient method can be used to prepare (NEt<sub>4</sub>)<sub>2</sub>tto on a gram scale in a few hours using routinely available reagents, although the yields are slightly lower than those with the anhydrous route. In these experiments, we found that the rate of sulfidation increased with an excess of C<sub>2</sub>Cl<sub>4</sub>. It was also found that prolonged reaction times resulted in diminished yields. We confirmed that  $tto^{2-}$ is stable to anhydrous NH<sub>3</sub> (2 h at 0 °C—i.e., 48 psig). Subsequent experiments showed that Na<sub>2</sub>S<sub>2</sub> and C<sub>2</sub>Cl<sub>4</sub> react slowly in anhydrous ammonia to give small amounts of tto<sup>2-</sup>.

The  $(Et_4N)_2$ tto was identified by microanalysis and by its IR and UV-vis spectra. The <sup>13</sup>C NMR chemical shift of a CD<sub>3</sub>OD solution of  $(Et_4N)_2$ tto is  $\delta$  268.2, vs 268.7 observed for an aqueous solution.<sup>1b</sup> Methanolic  $(Et_4N)_2$ tto reacts with aqueous Ni(H<sub>2</sub>O)<sub>6</sub>Cl<sub>2</sub> to produce a black solid with approximate formula NiC<sub>2</sub>S<sub>4</sub>, with the appropriate IR spectrum.<sup>14</sup>


**Conversion of tto**<sup>2–</sup> **into**  $C_3S_5^{2-}$ . It has long been proposed<sup>1,2</sup> that tto<sup>2–</sup> is the precursor to  $C_3S_5^{2-}$  in the reduction (chemical and electrochemical) of  $CS_2$ .<sup>15</sup> We confirmed this proposal by treating a DMF solution of  $(Et_4N)_2$ tto with  $CS_2$  to produce  $C_3S_5^{2-}$ , which was spectroscopically identical to that generated by base hydrolysis of the bis(thioester)  $C_3S_5(C(O)-Ph)_2$ .<sup>3</sup> The spectroscopic yield was virtually quantitative. Furthermore, we conducted this reaction using <sup>13</sup>CS<sub>2</sub>, trapping the product as the titanocene derivative.<sup>16</sup> The compound  $Cp_2TiC_3S_5$  has rather distinctive optical and NMR properties; thus this experiment further confirms the conversion of tto<sup>2–</sup> into  $C_3S_5^{2-}$ . The <sup>13</sup>C NMR spectrum of this species showed that the label was in the thiocarbonyl, i.e.,  $Cp_2TiS_2C_2S_2^{13}CS$  (Scheme 2).

**Conversion of tto**<sup>2–</sup> **into**  $C_4S_6^{2-}$ **.** Prolonged reactions of  $C_2Cl_4$  with  $Na_2S_2$  result in dark solutions which were shown by UV–vis spectroscopy to contain  $C_4S_6^{2-}$ .<sup>17</sup> We hypothesize that this transformation involves oxidation of tto<sup>2–</sup> by the small amount of sulfur generated (see eq 3). The reactivity of preformed tto<sup>2–</sup> toward elemental sulfur was confirmed; this reaction cleanly gives  $C_4S_6^{2-}$ . This oxidative nature of this pathway is further indicated by the finding that treatment of tto<sup>2–</sup> with 0.5 equiv of I<sub>2</sub> followed by heating gave blue  $C_4S_6^{2-}$ .

in quantitative yield (eq 4). This coupling process may involve the intermediacy of the disulfide  $(C_2S_4)_2^{2^-}$ .

$$\stackrel{s}{\longrightarrow} \stackrel{s}{\longrightarrow} \stackrel{s}$$

Collectively, the above experiments on the oxidation of  $tto^{2-}$  provided the basis for an efficient synthesis of  $C_4S_6^{2-}$ , which is a binucleating ligand.<sup>17</sup> A mixture of  $C_2Cl_4$  and  $Na_2S_2$  in refluxing MeCN solution gives  $(Et_4N)_2C_4S_6$  in 90% yield. The previous synthesis of  $C_4S_6^{2-}$  requires the slow base hydrolysis of the bicyclic species  $C_3S_7O$ , itself obtained in two steps from  $C_3S_5^{2-}$ .<sup>17</sup> The present results suggest that the conversion of  $C_3S_7O$  into  $C_4S_6^{2-}$  proceeds via the intermediacy of tto<sup>2-</sup>, which, as discussed above, is highly susceptible to oxidation by elemental sulfur (eq 5).



## Summary

A new route to  $tto^{2-}$  has been developed. Reactivity studies show that this species is an intermediate in the formation of two important thioanions,  $C_3S_5^{2-}$  and  $C_4S_6^{2-}$ . The new syntheses of  $tto^{2-}$  and  $C_4S_6^{2-}$  should facilitate further research on these binucleating ligands.

# **Experimental Section**

**Materials and Methods.** Na<sub>2</sub>S<sub>2</sub> was prepared by the addition of 12.83 g of S<sub>8</sub> to 9.2 g of Na in NH<sub>3</sub> followed by evaporation. The resulting orange solid was stored in a nitrogen-filled glovebox; it was crushed into a fine powder before use. <sup>13</sup>CS<sub>2</sub> (99.99% enrichment) was obtained from Cambidge Isotopes (Andover, MA) and was diluted with five volumes of unlabeled CS<sub>2</sub> prior to use. Unless otherwise noted, reactions and workups were conducted under an inert atmosphere using degassed solvents.

Synthesis of (Et<sub>4</sub>N)<sub>2</sub>tto from Anhydrous Na<sub>2</sub>S<sub>2</sub>. A 500-mL roundbottom flask was loaded with 1.1 g (0.01 mol) of Na<sub>2</sub>S<sub>2</sub> inside a N<sub>2</sub>filled glovebox. Approximately 20 mL of MeOH was added to the flask to dissolve the Na<sub>2</sub>S<sub>2</sub>. The resulting orange-yellow solution was then diluted with 200 mL of MeCN, giving a green coloration, followed by 1.02 mL (0.01 mol) of C<sub>2</sub>Cl<sub>4</sub>. No color change or precipitation occurred upon the addition of the C<sub>2</sub>Cl<sub>4</sub>. The solution was heated at reflux for 45 min. The solution became dark brown concomitant with the appearance of a large amount of pale yellow precipitate. The hot slurry was treated with 1.1 g (0.0066 mol) of solid Et<sub>4</sub>NCl, and the mixture was allowed to cool to room temperature. The solvent was removed under reduced pressure, and 30 mL of MeOH was added to extract the product from the bulk of the NaCl. The filtrate was treated with  $\sim 200$  mL of Et<sub>2</sub>O to precipitate the crude product as dark orange microcrystals. The precipitate was washed thoroughly with CH<sub>2</sub>Cl<sub>2</sub> to removed an impurity of the blue salt (Et<sub>4</sub>N)<sub>2</sub>C<sub>4</sub>S<sub>6</sub>. The resulting solid was extracted with 150 mL of MeCN, and the extract was filtered and concentrated until the appearance of orange yellow crystals. A small amount of MeOH (~5 mL) was added to redissolve the crystals, and 200 mL of Et<sub>2</sub>O was added to crystallize analytically pure (Et<sub>4</sub>N)<sub>2</sub>tto. Yield: 0.45 g (36%). IR (KBr), cm<sup>-1</sup>: 2976 (m), 1456 (m), 1397 (m), 1308 (w), 1182 (m), 1129 (m), 988 (s), 798 (m), 760 (m), 740

<sup>(14)</sup> Reynolds, J. R.; Karasz, F. E.; Lillya, C. P.; Chien, J. C. W. J. Chem. Soc., Chem. Commun. 1985, 268.

<sup>(15)</sup> Jeroschewski, in a review, <sup>Ib</sup> also mentioned his otherwise unpublished finding that  $tto^{2-}$  and  $CS_2$  react to give  $C_3S_5^{2-}$ .

<sup>(16)</sup> Yang, X.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1989, 111, 3465.

 <sup>(17)</sup> Szczepura, L. F.; Galloway, C. P.; Zheng, Y.; Han, P.; Rheingold, A. L.; Wilson, S. R.; Rauchfuss, T. B. Angew. Chem., Int. Ed. Engl. 1995, 34, 5220 (Angew. Chem. 1995, 107, 2027).

(m). <sup>13</sup>C NMR (CD<sub>3</sub>OD):  $\delta$  268.2. UV–vis [ $\lambda_{max}$ , nm ( $\epsilon$ , M<sup>-1</sup> cm<sup>-1</sup>)] (MeOH solution): 286 (6400), 342 (3500). Anal. Calcd for C<sub>18</sub>H<sub>40</sub>N<sub>2</sub>S<sub>4</sub>: C, 52.37; H, 9.77; N, 6.78. Found: C, 52.14; H, 9.75; N, 6.68.

Synthesis of (Et<sub>4</sub>N)<sub>2</sub>tto Using Na<sub>2</sub>S·9H<sub>2</sub>O. A large crystal of Na<sub>2</sub>S·9H<sub>2</sub>O was rinsed with acetone and then ground in a mortar and pestle. A portion of this white powder, 3.04 g (12.65 mmol), was dissolved in 16 mL of MeOH, and the solution was treated with 0.407 g (12.68 mmol S) of elemental sulfur. After 15 min, this yellow, slightly turbid mixture was diluted with 120 mL of MeCN, causing the solution part to turn green and a pale yellow, flocculent precipitate to form. Upon heating to 70 °C, the solution developed a deep green coloration and an orange semisolid appeared on the bottom of the flask. This mixture was treated with 1.13 mL (11.1 mmol) of C<sub>2</sub>Cl<sub>4</sub>. Traces of a fine, white precipitate were observed immediately. The mixture was maintained at 70 °C for 25 min. Over this period, more white solid was observed, the orange semisolid disappeared, and the solution became orange-brown. The mixture was quickly cooled to room temperature and treated with 1.42 g of  $Et_4NCl$  followed by removal of the solvents in vacuo. The brown residue was treated with 30 mL of MeOH, resulting in a brown solution and a white solid, which was removed by filtration. The filtrate was treated with 80 mL of Et<sub>2</sub>O, giving a yellow precipitate. The solid was collected in the air, leaving a pale brown filtrate, which was discarded. The solid was washed with three 10 mL portions of  $CH_2Cl_2$  to remove  $(Et_4N)_2(C_4S_6)$ . To the residue was added 140 mL of MeCN in two portions, and the mixture was filtered to remove the white solid (NaCl). The brown solution was concentrated to 20 mL under reduced pressure, causing orange crystals to form. This slurry was diluted with 30 mL of Et<sub>2</sub>O to give additional crystals, which were washed with CH<sub>2</sub>Cl<sub>2</sub>. Yield: 0.512 g, 29%. Anal. Calcd for C18H40N2S4: C, 52.37; H, 9.77; N, 6.79. Found: C, 51.98; H, 9.87; N, 6.73. The reaction time of 25 min is important: reaction times of 1 h caused approximately half of the  $(Et_4N)_2$ tto to be converted to  $(Et_4N)_2(C_4S_6)$ .

**Conversion of tto**<sup>2–</sup> **to**  $C_3S_5^{2–}$ . Under an atmosphere of purified nitrogen, 25.4 mg of (Et<sub>4</sub>N)<sub>2</sub>tto was dissolved in 50.0 mL of DMF. A 0.500 mL aliquot of this orange solution was diluted with DMF to 5.00 mL. This dilute solution was transferred to an airtight cuvette with a path length of 1 cm, and excess  $CS_2$  (10.0  $\mu$ L) was added. A change in color from yellow to red was complete within 3 h. The yield of  $C_3S_5^{2–}$ , based on tto<sup>2–</sup>, was determined spectroscopically (see below) to be 97%. To determine the extinction coefficient of  $C_3S_5^{2–}$ , a standard solution was prepared as follows. To approximately 5 mL of a 2 M solution of sodium methoxide was added  $C_3S_5$ (COPh)<sub>2</sub> (24.9 mg,  $6.12 \times 10^{-5}$  mol). The resulting deep red solution was evaporated to dryness and 5.00 mL of degassed DMF added. Under anaerobic conditions, a 50- $\mu$ L aliquot of the resulting deep blue solution was diluted to 5.00 mL, and the resulting pale blue solution was transferred

to an airtight cuvette. Neutralizing the excess base with ammonium bromide (20 mg) caused the solution to turn red immediately ( $\lambda_{max} = 490 \text{ nm}$ ;  $\epsilon = 4610 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$ ).

**Preparation of Cp<sub>2</sub>Ti(C<sub>3</sub>S<sub>5</sub>) from (Et<sub>4</sub>N)<sub>2</sub>tto.** A suspension of 0.255 g of a mixture of (Et<sub>4</sub>N)<sub>2</sub>tto and NaCl—determined spectroscopically to contain 74% (Et<sub>4</sub>N)<sub>2</sub>tto (0.46 mmol)—in 20 mL of MeCN was treated with 0.040 mL of 17% <sup>13</sup>C-enriched CS<sub>2</sub>. After 17 h, the resulting orange solution was treated with 0.116 g (0.466 mmol) of Cp<sub>2</sub>TiCl<sub>2</sub> to give, after 1 h, a green solution. The solvents were removed under reduced pressure. The residue was extracted with 8 mL of CH<sub>2</sub>Cl<sub>2</sub>, and the extract was purified by column chromatography (silica gel, 2.5 × 24 cm), eluting with CH<sub>2</sub>Cl<sub>2</sub>. The first (green) band was concentrated and diluted with pentane to give green microcrystals. Yield: 0.0878 g (45%, based on (Et<sub>4</sub>N)<sub>2</sub>tto). <sup>1</sup>H NMR (CD<sub>3</sub>COCD<sub>3</sub>, 500 MHz, 23 °C)  $\delta$  6.2 (br). <sup>13</sup>C NMR (CD<sub>3</sub>COCD<sub>3</sub>):  $\delta$  215.8.

**Oxidation of (Et<sub>4</sub>N)<sub>2</sub>tto to (Et<sub>4</sub>N)<sub>2</sub>C<sub>4</sub>S<sub>6</sub>.** To a solution of 0.21 g (0.5 mmol) of (Et<sub>4</sub>N)<sub>2</sub>tto in 30 mL of MeOH was added 0.064 g (0.25 mmol) of I<sub>2</sub>. No color change was apparent until the solution was heated to reflux. After 30 min, the violet mixture was cooled to room temperature and filtered. Approximately 50 mL of Et<sub>2</sub>O was added to precipitate dark blue microcrystals of (Et<sub>4</sub>N)<sub>2</sub>C<sub>4</sub>S<sub>6</sub>. Yield: 0.100 g (90%).

(Et<sub>4</sub>N)<sub>2</sub>C<sub>4</sub>S<sub>6</sub>. A 500-mL round-bottom flask was charged with 1.32 g (0.012 mol) of Na<sub>2</sub>S<sub>2</sub> followed by 20 mL of MeOH and 200 mL of MeCN. The green solution was treated with 0.41 mL (0.00378 mol) of C2Cl4, resulting in no apparent change in color or homogeneity. The solution was heated at reflux (80-85 °C) for 24 h. During this time, the solution became dark blue. The warm solution was filtered (with the complete exclusion of air) to remove the pale yellow precipitate (presumed to be NaCl and  $S_8$ ). The filtrate was treated with 0.84 g (0.002 mol) of Et<sub>4</sub>NBr, allowed to cooled to room temperature, and then concentrated to dryness. The residue was extracted with 50 mL of MeCN, and the extract was filtered to remove NaBr and then diluted with  $\sim 200$  mL of Et<sub>2</sub>O to precipitate blue microcrystals. Yield: 0.90 g (90%, based on C<sub>2</sub>Cl<sub>4</sub>). IR (KBr): 1182 cm<sup>-1</sup> ( $\nu_{c=s}$ ). UV-visible  $[\lambda_{\text{max}}, \text{nm} (\epsilon, M^{-1} \text{ cm}^{-1})]$  (CH<sub>3</sub>CN solution): 240 (25 000), 340 (8500), 800 (13 000). Anal. Calcd for C<sub>20</sub>H<sub>40</sub>N<sub>2</sub>S<sub>6</sub>: C, 47.95; H, 8.05; N, 5.59. Found: C, 47.78; H, 8.10; N, 5.63.

Acknowledgment. This work was supported by the U.S. Department of Energy, Division of Materials Science, under Grant DEFG02-96ER45439 through the University of Illinois at Urbana-Champaign, Frederick Seitz Materials Research Laboratory. This research was also supported by the NSF. We thank G. Holloway for help with the tto<sup>2–</sup> preparation.

IC971327C