Lattice Microbes User’s Guide

Version 2.0
September 4, 2012

Authors:
Elijah Roberts
John Cole
Piyush Labhsetwar
Mike Hallock
John E. Stone
Zan Luthey-Schulten

University of Illinois at Urbana-Champaign
http://www.scs.illinois.edu/schulten/
http://latticemicrobes.sourceforge.net/

Description

The Lattice Microbes User’s Guide describes how to use the software to perform and analyze stochastic
simulations of spatially modeled microbial cells. Lattice Microbes development is supported in part by
the DOE (Office of Science BER) under grant DE-FG02-10ER6510, the NIH (Center for Macromolecular
Modeling and Bioinformatics) under grant NIH-RR005969, and the NSF under grant MCB-08226143.

Table of Contents

Listof Figures| e iii
[Chapter 1 Introduction| 1
[Chapter 2 Imstallation| 2
2.1 Systemrequirements| e e e e e e e e e e e e 2
[2.2 Obtaining source and binary distributions| L. 3
[2.3 Installing a precompiled binary| 3
2.4 Installing from sourcecode| 4
[2.4.1 Satisfying external dependencies|. L oL 5

[2.4.2 Unpack the source distribution| oL 7

[2.4.3 Configuring the build for your local environment| 7

2.4.4 Build and install the softwarel 9

2.5 Incaseof difficulty] 9
[Chapter 3 Quick-Start Guide|. 10
[3.1 Simulating a bimolecular reaction| 10
3.1.1 Buildingthemodels| 10

[3.1.2 Running the stmulations| 11

[3.1.3 Looking at the simulationoutput|. 12

[3.1.4 Analyzing a simulation using Matlab| 0oL 13

[3.1.5 Visualizing a trajectory using VMD|o o000 15

[3.1.6 Importing an SBML reactionmodel| 16
Bibliography| e 19

ii

List of Figures

[3.1 HDFView showing an open Lattice Microbes simulationfile 12
3.2 Mean and variance of A(t) for the reaction A + 5 = C.| 14
3.5 VMD open file dialog.| L 15
3.4 VMD moleculedisplay|. 16

iii

Chapter 1

Introduction

This User’s Guide contains instructions for using the Lattice Microbes software, as described in the follow-
ing publications: [1]], [2]], [3[]. This guide is very much a work in progress and will continue to be expanded.
At present, it should contain enough information to get started using the Lattice Microbes software.

Chapter 2

Installation

2.1 System requirements

The Lattice Microbes software [3]] has been tested on Linux 2.6 and Mac OS X 10.6.8. Although the soft-
ware can be run entirely on a system’s CPU, Lattice Microbes was designed from the ground up to take
advantage of NVIDIA Fermi (compute 2.0) and later GPUs which allow for orders-of-magnitude speedup
over the CPU-only implementations.

In order to take full advantage of the Lattice Microbes software, several external software packages should
be installed on your system:

Requisite for GPU acceleration, users of NVIDIA Fermi or later GPUs should ensure that the CUDA 4
drivers and libraries are installed and up to date. Both drivers and libraries can be found at:

http://developer.nvidia.com/cuda-downloads/

The popular molecular dynamics visualization and analysis software VMD can be used to view and animate
output trajectories. We believe that these capabilities are vital in understanding the details of how micro-
scopic phenomena give rise to cell-scale behavior. VMD is freely available at:

http://www.ks.uiuc.edu/Research/vmd/

Python scripts are used to set up realistic models of crowded cellular environments. Users should ensure
that Python is available on their system. If it is not, it can be downloaded at:

http://www.python.org/download/

Many users may find it necessary to compile Lattice Microbes from source code if, for example, they wish to
create custom reaction rate equations for their simulations, or will be installing Lattice Microbes on a com-
pute cluster, or simply because their specific compute architecture is not compatible with the precompiled
binaries available for download. In any case the HDF5 and Protocol Buffers libraries are required external
dependencies if the source code is to be compiled (See [2.4] for details). These libraries are available at:

http://www.hdfgroup.org/HDF5/release/obtain5.html

and

http://developer.nvidia.com/cuda-downloads/
http://www.ks.uiuc.edu/Research/vmd/
http://www.python.org/download/
http://www.hdfgroup.org/HDF5/release/obtain5.html

http://code.google.com/p/protobuf/downloads/list

respectively.

The Systems Biology Markup Language, or SBML, is used to efficiently import complex reaction networks
into biological models. Users intending on compiling from source should download and install libSBML in
order to ensure this functionality is available. These SBML libraries can be downloaded at:

http://sourceforge.net/projects/sbml/files/libsbml/

Finally, Lattice Microbes can be compiled with MPI in order to enable the distribution of replicates across
many compute nodes on a cluster.

Lattice Microbes is not a GUI program, it must be used from the command line. This enables it to efficiently
run on high performance computing (HPC) clusters with minimal overhead. Consequently, all user inter-
action with the software, including installation, must be performed through the command line interface. In

this chapter, commands to be executed from the command line are written as:
“luser@host ~/usr]$ 1s”, which means to run the command “1s” from the directory “~/usr”.

2.2 Obtaining source and binary distributions

Source and binary distributions may be obtained from the project download page:
http://www.scs.illinois.edu/schulten/1lm

2.3 Installing a precompiled binary

Available at the above url are several binaries precompiled for use either with or without GPU acceleration.
Users should select the binary appropriate for their system.

For the purposes of these instructions, it is assumed that the Lattice Microbes software will be installed into
the directory /home/<user>/usr, also referred to as ~/usr. If you wish to install the software elsewhere,
please adjust the instructions accordingly.

Download the appropriate binary distribution to a temporary directory /tmp.

Open a terminal and then change to this directory: [user@host ~]1$ cd /tmp

Unpack the binary distribution: [user@host /tmpl$ tar zxvf 1lm-2.0_<platform>.tgz

Copy the binaries to the installation directory: [user@host /tmpl]$ cp 1lm-2.0/bin/* ~/usr/bin
Make the library installation directory: [user@host /tmpl$ mkdir —-p ~/usr/lib/lm

Copy the libraries: [user@host /tmpl$ cp 1lm-2.0/lib/lm.py ~/usr/lib/lm

Download the VMD plugins directory, vimd_plugins.tar.gz, from the above webpage to a temporary direc-
tory as before, and unpack it: [user@host /tmpl$ tar zxvf vmdplugins.tar.gz

http://code.google.com/p/protobuf/downloads/list
http://sourceforge.net/projects/sbml/files/libsbml/
http://www.scs.illinois.edu/schulten/lm

Then just cd into the unpacked directory and copy its contents to the plugins/molfile directory of your VMD
distribution. For example:

(MacOSX)

[user@host /tmp/vmd_plugins]$ cp *.so /Applications/VMD 1.9.1.app/Contents/vmd/
plugins/MACOSXX86_64/molfile

(LINUX)
[user@host /tmp/vmd_plugins]$ cp *.so /usr/local/lib/vmd/plugins/LINUXAMD64/molfile

Note: if you have installed the software into a non-global location, such as installing to ~/uszr, you will
need to add the installation directory to you path. For example, you might add the following line to your
~/.bashrc or ~/.bash_profile file:

export PATH="S${PATH}":SHOME/usr/bin

Furthermore, if you have downloaded the CUDA version of lattice microbes, you must set the environment
variable for the loader to find the cuda libraries. This can be done by adding the following line to your
~/.bashrc or ~/.bash_profile file:

(0S X)
export DYLD LIBRARY PATH=$SDYLD LIBRARY PATH:/usr/local/cuda/lib
(LINUX)

export LD_LIBRARY_PATH=S$SLD_LIBRARY_PATH:/usr/local/cuda/lib

However, on Linux, this path may be slightly different, so if this command does not work, check your di-
rectory to make sure you have the right PATH for the CUDA library. If you are still unsure, check with your
system administrator.

Additionally, if you wish to set up a bacterial cell model with molecular crowding using Python, you will
have to point Python to the Lattice Microbes libraries. This can be done by adding the following line to your
~/.bashrc or ~/.bash profile file:

export LMLIBDIR=$HOME/usr/lib/lm

Finally, test the software installation: [user@host /tmp]$ 1lm —-help

2.4 Installing from source code

As the computer architecture landscape becomes increasingly heterogenous, many users may find that it is
easiest to simply compile Lattice Microbes from source code on their own machine. In order to accomplish
this as painlessly as possible, this section is designed with the average user—not a software engineer—in
mind.

2.4.1 Satisfying external dependencies

Although Lattice Microbes can be compiled and run without taking advantage of available GPU hardware,
we believe that the real strength of the software is the orders-of-magnitude speedup gained through GPU
acceleration. In order to use Lattice Microbes to its fullest, you will first need to install the CUDA 4 toolkit
and drivers appropriate for your platform, if they are not installed already. They can be found here:

http://developer.nvidia.com/cuda-downloads
The MacOSX installations are trivial—simply click through the installation wizards. Linux installation can
be somewhat more challenging, and will likely require you exit out of the gui interface. Help can be found

here:

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_
Getting_Started_Linux.pdf

Several other key features of the code also rely on external dependancies. Python is required for program-
matic setup of realistically crowded models of cells and analysis of simulation data. The popular SBML file
format is used to import complex reaction networks. Both Python and libSBML should be installed prior
to compiling the code, if they are not already. MacOSX systems generally have Python pre-installed, but
Linux users can find it via a package manager or download it here:
http://www.python.org/download/

The requisite SBML libraries can be found here:
http://sourceforge.net/projects/sbml/files/libsbml/

Again, installation on a Mac should be a breeze; installing libSBML for Linux should also be straight-
forward. On Red Hat-based systems, the available .rpm package should be downloaded to a convienient
location, such as /home/<user>/usr, and installed using rpm in a terminal window, for example:
[user@host /home/<user>/usr]$ rpm2cpio 1ibSBML-5.6.0-Linux-x64.rpm | cpio —-idmv
For Debian-derived distributions, the .deb package should be downloaded and installed using dpkg, e.g.:
[user@host /home/<user>/usr]$ sudo dpkg —-i 1ibSBML-5.6.0-Linux-x64.deb

Although CUDA, Python, and libSBML are not strictly necessary, they impart functionalities crucial for
studying large and complex biochemical systems under in vivo crowding conditions. The Protocol Buffers
and HDF?5 libraries, on the other hand, are absolutely essential to compiling the code. The protobuf library
is used for serialization of messages across the transport layer. It is available from:

http://code.google.com/p/protobuf/downloads/list

This will need to be compiled from source. Download the latest version to a convienient directory and ex-
tract it as:

http://developer.nvidia.com/cuda-downloads
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_Getting_Started_Linux.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_Getting_Started_Linux.pdf
http://www.python.org/download/
http://sourceforge.net/projects/sbml/files/libsbml/
http://code.google.com/p/protobuf/downloads/list

[user@host /home/<user>/usr]$ tar zxvf protobuf-2-1.4.1.tar
Move to the newly extracted directory, configure, and compile as:

[user@host /home/<user>/usr/protobuf-2-1.4.11$ configure
[user@host /home/<user>/usr/protobuf-2-1.4.1]1$ make
[user@host /home/<user>/usr/protobuf-2-1.4.1]1$% make install

The first of these commands queries several properties of your computer hardware and software, and sets
up the make file. The “make” command compiles the source code, and the “make install” command installs
the compiled files to their proper locations.

The HDFS library is used for reading models from and writing simulation data to HDFS formatted files. The
HDFS5 library is available from:

http://www.hdfgroup.org/HDF5/release/obtain5.html

Again, after downloading to a convienient directory extract the package, and move its contents to someplace
that it is not likely to be moved, such as:

/home/<user>/usr/hdf5-1.8.8-mac—-intel-x86_64—-static/

Note the word “‘static” in the directory above; static libraries, which end with extensions .a or .la for
MacOS and LINUX, are compiled along with everything else into one monolithic executable binary. Also
available are shared or dynamic libraries, which end in .dylib or .so; these are not compiled into the exe-
cutable binary, but rather remain separate and are linked to. Whether you compile against static or dynamic
libraries is up to you, but you will have to treat them differently when setting up your local.mk file, which
will be described below in[2.4.3]

Finally, if you intend to compile with MPI for use on a compute cluster, you will need to acquire and install
the requisite libraries. There are several implementations of MPI available, and care should be taken in order
to choose the right one for your cluster.

If one of the above packages is needed and is not already installed on your system, download a binary or
source installation package and follow the installation instructions that accompany it. If you have problems,
please contact your system administrator for assistance.

Note: if you install any external shared libraries into a non-global location, such as installing to ~/usr, you
will need to set an environment variable for the loader to find these libraries. For example, you might add
the following line to your ~ /.bashrc or ~ /.bash._profile file:

(0S X)
[user@host /home/<user>/usr]$ export DYLD_LIBRARY PATH=S$DYLD_LIBRARY PATH:/usr/
local/cuda/lib

(LINUX)
[user@host /home/<user>/usr]$ export LD_LIBRARY PATH=$LD _LIBRARY PATH:/usr/
local/cuda/lib

where /usr/local/cuda/lib is the path to a dynamic library you will be compiling against, in this case a CUDA
library. This will need to be done for all of the dynamic libraries you compile against.

http://www.hdfgroup.org/HDF5/release/obtain5.html

2.4.2 Unpack the source distribution

For the purposes of these instructions, it is assumed that the Lattice Microbes software will be installed into
the directory /home/<user>/usr, also referred to as ~/usr. If you wish to install the software elsewhere,
please adjust the instructions accordingly.

Download the source distribution from the URL above to the directory ~/usr/src.
Open a terminal and then change to this directory: [user@host ~]$ cd ~/usr/src
Unpack the source distribution: [user@host ~/usr/srcl$ tar zxvf 1m-2.0.tgz

Change to the source directory: [user@host ~/usr/srcl$ cd 1m-2.0

2.4.3 Configuring the build for your local environment

The Lattice Microbes source distribution ships with two default configuration files, one for Linux and one
for Mac OS X. These files are located at:

docs/config/local.mk.linux
and
docs/config/local .mk.osx.

To begin, copy the file corresponding to your system to local .mk:
[user@host ~/usr/src/1Im-2.0]$ cp docs/config/local.mk.<platform> local.mk

Edit the 1ocal.mk file to contain the correct options and file locations for your local environment. For
example, if you installed the HDF5 and protobuf libraries into the /home/<user>/usr directory, you
should set the PROTOBUF and HDFS options as follows:

PROTOBUF_PROTOC := /home/<user>/usr/bin/protoc

PROTOBUF_INCLUDE_DIR := —-I/home/<user>/usr/include

PROTOBUF_LIB_DIR := —-L/home/<user>/usr/lib

PROTOBUF_LIB := —-lprotobuf

HDF5_INCLUDE_DIR := -I/home/<user>/usr/hdf5-1.8.8-mac-intel-x86_64-static/include
HDF5_ LIB_DIR := -L/home/<user>/usr/hdf5-1.8.8-mac-intel-x86_64-static/1lib
HDF5_LIB := —-1hdf5 -1hdf5_hl -1z -1lsz

Note: the HDFS library actually has two dependencies of its own—SZIP and ZLIB—and the corresponding
libraries are likely bundled with the software you downloaded. The last line above,

HDF5_LIB := —-1hdf5 -1hdf5_hl -1z -1lsz

must include the last two tags, “-1z” and “-1sz” in order to properly satisfy these dependencies. Also note
that if you are compiling against static libraries, make sure to download static versions of libraries whenever
possible; in this case you should leave the XXX L.IB_DIR lines blank, and pass the full path to the static
libraries in the corresponding XXX _LIB lines, as:

PROTOBUF_PROTOC := /home/<user>/usr/bin/protoc
PROTOBUF_INCLUDE_DIR := —-I/home/<user>/usr/include

PROTOBUF_LIB_DIR :=

PROTOBUF_LIB := -1z /home/<user>/usr/lib/protobuf.a

HDF5_INCLUDE_DIR := —-I/home/<user>/usr/hdf5-1.8.8-mac-intel-x86_64-static/include

HDF5_LIB_DIR :=

HDF5_LIB := -1z /home/<user>/usr/hdf5-1.8.8-mac-intel-x86_64-static/lib/libhdf5.a
/home/<user>/usr/hdf5-1.8.8-mac—-intel-x86_64-static/lib/libhdf5 hl.a
/home/<user>/usr/hdf5-1.8.8-mac-intel-x86_64-static/lib/libsz.a
/home/<user>/usr/hdf5-1.8.8-mac—-intel-x86_64-static/lib/libz.a

Each optional package has a section in the 1ocal .mk file that is initially disabled and begins with a line
like:

USE_XXXX := 0

To enable a specific package, set the flag corresponding to the package to 1 and set the options and locations
appropriately. For example, if you are using Open MPI you might set the MPI options as follows:

USE_MPI := 1
MPI_COMPILE_FLAGS = -DOMPI_SKIP_MPICXX=1] $(shell mpicc —--showme:compile)
MPI_LINK_FLAGS = $(shell mpicc —--showme:link)

For alternate MPI implementations you may need to experiment with the mpicc command to discover the
correct settings or look at the example configuration files included with the Lattice Microbes source distri-
bution.

If you are using Python 2.6 you might set the Python options as follows:

USE_PYTHON := 1

PYTHON_SWIG := /usr/bin/swig
PYTHON_INCLUDE_DIR := —-I/usr/include/python2.6
PYTHON_LIB DIR := -L/usr/lib

PYTHON_LIB := -lpython2.6

If you are using CUDA with a “Fermi” capable device you might set the CUDA options as follows:

USE_CUDA := 1

CUDA_NVCC := /usr/local/cuda/bin/nvcc

CUDA_FLAGS := -m64 —--ptxas-options=-v —--gpu-architecture compute_20 \
—-—gpu—-code sm_20 -DMACOSX -DCUDA_3D_GRID_LAUNCH \
—-DCUDA_DOUBLE_PRECISION —-DTUNE_MPD_Y BLOCK_Y_ SIZE=16 \
-DTUNE_MPD_Z_BLOCK_Z_SIZE=8

CUDA_INCLUDE_DIR := —-I/usr/local/cuda/include

CUDA_LIB_DIR := -L/usr/local/cuda/lib

CUDA_LIB := —-lcuda —-lcudart

CUDA_GENERATE_PTX_CODE := 0

CUDA_GENERATE_BIN_CODE := 0

CUDA_GENERATE_ASM_CODE 0

If you want to build Lattice Microbes with support for importing SBML files (and have libSBML installed
to /home/<user>/usr) you might set the SBML options as follows:

USE_SBML := 1

SBML_INCLUDE_DIR := —-I/home/<user>/usr/include
SBML_LIB_DIR := -L/home/<user>/usr/lib
SBML_LIB := -1lsbml

(OS X) If you want to build the VMD plugin and have VMD installed to the Applications folder you might
set the VMD options to:

USE_VMD := 1
VMD_INCLUDE_DIR := -I/Applications/VMD\ 1.9.1.app/Contents/vmd/plugins/include
VMD_INSTALL_DIR := /Applications/VMD\ 1.9.1.app/Contents/vmd/plugins/MACOSXX86_64/molfile/

(LINUX) If you want to build the VMD plugin and have VMD installed to /usr/local you might set the
VMD options to:

USE_VMD := 1
VMD_INCLUDE_DIR := -I/usr/local/lib/vmd/plugins/include
VMD_INSTALL_DIR := /usr/local/lib/vmd/plugins/LINUXAMD64/molfile

Finally, you should set the installation location for the Lattice Microbes software:

INSTALL_PREFIX := /home/<user>/usr

2.4.4 Build and install the software

Now that the build is configured, build the source code:

[user@host ~/usr/src/1lm-2.0]$ make

Once the build successfully completes, install the software:
[user@host ~/usr/src/1lm-2.0]$ make install

Note: if you have installed the software into a non-global location, such as installing to ~/usr, you will
need to add the installation directory to you path. For example, you might add the following line to your
~/ .bashrc file:

export PATH="${PATH}":S$SHOME/usr/bin

Finally, test the software installation: [user@host ~/usr/src/lm-2.0]$ 1lm --help

2.5 In case of difficulty

If you experience problems when building the software, please visit the Help forum at:
http://sourceforge.net/projects/latticemicrobes/forums.

http://sourceforge.net/projects/latticemicrobes/forums

Chapter 3

Quick-Start Guide

3.1 Simulating a bimolecular reaction

k
As a simple first example, we will consider the reversible bimolecular reaction A+ B Tl C. We will simu-
2
late two variations of this reaction, one it which the molecules are assumed to move very quickly relative to

the reaction rate (“well-stirred”) and one in which the diffusion rates do play a significant role in the react-
ing system. We will solve these two models using chemical master equation (CME) and reaction-diffusion
master equation (RDME) sampling methods, respectively.

The overall steps involved will be as follows:
1. Build the simulation files containing the reaction and diffusion models.
2. Run the simulations using any solver specific parameters.
3. Analyze the simulation output. Output is saved directly into the simulation file.

To begin, open a terminal and change to the gs/bimol directory in your User’s Guide installation.

3.1.1 Building the models

The most straightforward way to construct a reaction model for a Lattice Microbes simulation is to di-
rectly set the matrices in the simulation file. The utilities 1m_setrm and 1m_setdm allow one to set the
matrices for the reaction and diffusion models, respectively. The details of the matrices themselves will
be described elsewhere. For the bimolecular reaction described above with k1 = 1.07x10° M~ s~! and
k2 = 0.351 s~1, we use the following command to build the reaction model:

[user@host gs/bimol]$ 1lm_setrm bimol-cme.lm numberSpecies=3 numberReactions=2 \
"InitialSpeciesCounts=[1000,1000,0]" "ReactionTypes=[2,1]" \
"ReactionRateConstants(:,0)=[1.78e-4;0.3511" \
"StoichiometricMatrix=[-1,1;-1,1;1,-11" \
"DependencyMatrix=[1,0;1,0;0,1]1"

Note that we used the relationship between the stochastic and deterministic second order rate constants
k2" = k2/N -V with a simulation volume of V' = 1x107! L to obtain the rate constant for the model.
The file bimol-cme . 1m is now ready to be simulated using the CME.

Since the reaction portion of an RDME model is identical to the CME model, we simply copy the reac-
tion model to a new simulation file and then set the diffusion matrices on the new file. Here, we use a
diffusion coefficient D = 1x107'4m?2 s—1 for all molecules and a 32x32x32 lattice with a spacing of
A =31.25x10"% m.

10

[user@host gs/bimol]$ cp bimol-cme.lm bimol-rdme.lm

[user@host gs/bimol]$ 1lm_setdm bimol-rdme.lm numberReactions=2 numberSpecies=3 \
numberSiteTypes=1 "latticeSize=[32,32,32]1" \
latticeSpacing=31.25e-9 particlesPerSite=8 \
"DiffusionMatrix=[1le-14]" "ReactionLocationMatrix=[1]"

The file bimol-rdme. 1m is now ready to be simulated using the RDME.

3.1.2 Running the simulations

Sampling the CME using the Gillespie direct method

To simulate the well-stirred version of the bimolecular reaction model, we will use the Gillespie direct
method, which is the default method for well-stirred simulations in Lattice Microbes. Before we run the
simulations, we first set a few simulation parameters for the solver. The 1m_setp utility allows one to set
solver specific parameters in the simulation file. Here, we tell the solver to simulate for 10 seconds and write
out the system state every 0.001 second.

[user@host gs/bimol]$ 1lm_setp bimol-cme.lm writeInterval=le-3 maxTime=lel
Finally, we run the actual simulation itself:

[user@host gs/bimol]$ Im -r 1-100 -ws -f bimol-cme.lm

The —-r option tells the solver to simulate replicates 1-100 and the —-ws option tells Lattice Microbes to use
the default well-stirred solver. Following completion of the runs the bimol-cme. 1m file will contain the
sampling data for all of the simulation replicates.

Sampling the RDME using the next-subvolume method

If no graphics processing units (GPUs) are attached to your computer, the only available RDME solver is
the next-subvolume method. We first set the appropriate parameters as before, but additionally, since we
wish to track individual molecules, we must set a lattice output interval. Writing the lattice too frequently
can consume an enormous amount of disk space so one should sample the lattice much less frequently than
the system state, which only outputs the total count of each molecule type. Here, we sample the lattice every
0.1 second so we will have 100 samples of each 10 second simulation replicate.

[user@host gs/bimol]$ 1m_setp bimol-rdme.lm writeInterval=le-3 \
latticeWriteInterval=le-1 maxTime=lel

We then run the RDME simulations. These simulations take significantly longer than the well-stirred equiv-
alents, so here we only simulate 10 replicates:

[user@host gs/bimol]$ Im -r 1-10 -sl 1m::rdme::NextSubvolumeSolver \
—f bimol-rdme.lm

All of the system state information and lattice data for every replicate will be saved into the bimol-cme.1lm
file.

Sampling the RDME using the MPD-RDME method

If you do have an NVIDIA GPU attached to your computer, you can also use the MPD-RDME solver. This
is an approximate RDME solver that uses a time stepping approach to dramatically increase simulation
performance. We will run ten additional RDME replicates using the MPD-RDME. First, set the time step
parameter to 3 milliseconds:

11

File Window Tools Help

Recent Files |/Users/erobert3 /gs/bimol/bimol-cme.lm w | Clear Text
[¥] bimol-cme.Im [TableView - SpeciesCounts - /Simula... & [
¢ ‘@ Model B

¢ gy Reaction

) DependencyMatrix

8 InitialspeciesCounts

[ReactionRateConstants

) ReactionTypes

) stoichiometricMatrix

24 Parameters

¢ ‘@ Simulations
& @ 0000001
[SpeciesCountTimes

D o |~ e o | s (i |

=
(=]

—
—

[SpeciesCounts
o 230000002
o~ 23 0000003
o= 23 0000004
e Fannnnnns

—
Fa

—
(i

=
£y

—
LA

=
{=1}

BB (s sfE s (wwwww[raae =

—
~

SpeciesCounts (9672)
32-bit integer, 10001 x 3
Number of attributes = 0

Metadata 4

Figure 3.1: HDFView showing an open Lattice Microbes simulation file.

[user@host gs/bimol]$ 1lm_setp bimol-rdme.lm timestep=3.0e-3
Then run replicates 11-20 using the MPD-RDME solver:

[user@host gs/bimol]$ 1m -r 11-20 -sl 1lm::rdme::MpdRdmeSolver —-f bimol-rdme.lm

Following completion of the runs, ten additional simulation replicates will have been added to the bimol-cme . 1m
file.

3.1.3 Looking at the simulation output

The output data is stored in a Lattice Microbes simulation file, which is an HDF5 encoded file that stores
large, independent data sets in a hierarchical structure. To view the data, one must use an HDF5 viewer such
as HDFView available at:

http://www.hdfgroup.org/hdf-java-html/hdfview/

To install the HDFView program, please follow the installation instructions for your platform.

Opening a simulation file

To open a Lattice Microbes simulation file in HDFView choose File—QOpen from the menu. Navigate to
your gs/bimol directory in the Open dialog. Be sure to change the Files of Type: option to All Files and
then select the bimol-cme. 1m file.

12

http://www.hdfgroup.org/hdf-java-html/hdfview/

Once the file is opened, the individual folders containing the Model, Parameters, and Simulation data can
be expanded, as shown in Figure 3.1] Datasets are shown as small grid-like icons underneath the folders.
Double clicking on a dataset will display its contents in the viewer panel to the right. For additional usage
details, please see the HDFView User’s Guide, located on the download page given above.

Overview of the file format

Lattice Microbes simulation files are organized into three top level folders: Model, Parameters, and Sim-
ulation.

The Model folder contains two subfolders for the Reaction and Diffusion models, as needed for the sim-
ulation. Each folder has several attributes and contains several datasets corresponding to the matrices that
describe the model. Further details of the matrices themselves are provided elsewhere.

The Parameters folder acts as a collection point for solver specific parameters, which are set as attributes
on the folder. Details of individual parameters are provided elsewhere.

The Simulations folder contains the actual output from the simulations. Beneath the folder is one folder for
each simulation replicate, numbered accordingly. For each simulation replicate the data is stored in a variety
of matrices and folders, which are specific to the simulation method.

3.1.4 Analyzing a simulation using Matlab

The HDFS5 file format used by the Lattice Microbes software can be directly read by Matlab, easing the
analysis of simulation data. Here, we will calculate the probability as a function of time for the system to
have a specific number of A molecules, i.e., P4 (t). We will use this probability density function (PDF) to
calculate the mean and variance as a function of time.

First, we load the number of A molecules for each replicate at each time point from the simulation file and
transform the counts into a PDF:

inputFilename="'bimol-cme.lm';
x=[0:1000];
numberReplicates=100;
species=1;
for R=[1l:numberReplicates]
if R ==
ts=cast (permute (hdf5read (inputFilename, ...
sprintf ('/Simulations/%07d/SpeciesCountTimes',R)), [2,1]), "double"');
Pt=zeros (size(x,2),size(ts,2));
end
counts=cast (permute (hdf5read (inputFilename, ...
sprintf ('/Simulations/%$07d/SpeciesCounts',R)),[2,1]), "double');
for ti=[l:size(ts,2)]
Pt (counts (ti, species)+1,ti)=Pt (counts(ti, species)+1,ti)+1;
end
end
Pt=Pt./numberReplicates;

Note that HDFS5 files store data in row major format while Matlab stores data in column major format. In the
above Matlab code, we used the permute (hdf5read(...), [2,1]) command to reorder the 2D matrices

13

1000

E{A(t)}

Var{A(t)}

800

600

400

200

10

200

150

100

50

10

Figure 3.2: Mean and variance of A(t) for the reaction A + B = C.

to column major format after the data was loaded.

Next, we calculate the mean and variance from the P4 ():

E=zeros (
V=zeros (
for ti=[1

end

1!
1,
:size
E(ti)=
Vi(ti)=

size(ts,2));
size(ts, 2 ;
(ts, 2
X
(

14

)) i
(ti),2)) .xPt (:,ti));

sum(x"'.*P
sum ((powe

))
))
)1
t(:,ti
r(x'-E

Finally, we plot the mean and variance as a function of time:

subplot (2,

plot (ts (1

axis ([0 10 1le2 1e3]);
subplot (2,

plot (ts (1

axis ([0 10 le0 2e2]);

1,1);

:10:end), E(1:10:end));

xlabel ('Time (s)'); ylabel ("EN{A(t)\}");
1,2);
:10:end), V(1:10:end));

xlabel ("Time (s)'); ylabel ('Var\{A(t)\}"');

The resulting plot should look like that shown in Figure[3.2]

14

Load files for: INew Molecule j

Filename: IatticeMicrohefducsqua’bimolfhimol—rdme.lni Browse_..l

Determine file type:

|Lartice Microbes ~| Load |

Frames: Volumetric Datasets
First: Last: Stride:
[0 1 [

@ Load in background
© Load all at once

Figure 3.3: VMD open file dialog.

As another example, we calculate some statistics about the distribution of the molecules in RDME simu-
lations. The lattice is stored as a four dimensional matrix with dimensions x Xy X zxparticles PerSite.
In our example above, the number of particles per site was limited to eight. We will count the number of
particles in any sites’ first, second, third, etc position. Such a calculation can give an indication of how close
the lattice is to overflowing.

replicate=1;
L=permute (h5read ('bimol-rdme.1lm', sprintf ('/Model/Diffusion/Lattice')), [4,3,2,1]1);
psum=sum (sum (sum (L>0))) ;

disp(sprintf ('initial=%d (%d %d %d %d %d %d %d %d) %d--%d', ...
sum (sum (sum (sum(L>0)))),psum, min (min (min (min(L)))), ...
max (max (max (max (L))))));

for ts=[0:100]
L=permute (h5read('bimol-rdme.lm', ...
sprintf ('/Simulations/%$07d/Lattice/%010d', ...
replicate,ts)), [4:-1:1]1);
psum=sum (sum (sum(L>0))) ;

disp (sprintf ('ts %$4d=%d (%d %d %d %d %d %d %d %d) %$d--%d',ts,...
sum (sum (sum (sum (L>0)))),psum, min (min (min (min(L)))), ...
max (max (max (max (L))))));
end
Note that here again we used the permute (hdf5read(...), [4,3,2,1]) command to reorder the 4D

matrices to column major format after the data was loaded.

3.1.5 Visualizing a trajectory using VMD

If you have installed the VMD plugin, you can use VMD to visualize RDME trajectories. For general
instructions on using VMD, please see the VMD help at http://www.ks.uiuc.edu/Research/
vmd/|l Here we will focus on using VMD to visualize Lattice Microbes trajectories. First, ensure that your
VMD plugin is functioning by starting VMD and then checking the VMD console for a message like:

ILMplugin Info) version 2 build by XXXXXXXX on XXX at XXXX-XX-XX XX:XX:XX

15

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/

.
“ ™
:'-\gu ‘e :' e @ ¢
@ ® . o ® “
. S we % : g}“(’" ™y .\ﬁ : °
1)
¢ ¢ ® LZ;,“V U\;"O Py @]
CJ & o ™ & & @
® ““ & oy uw‘u‘:“f v o T oeeg e
@ U6 egg Ve se O g #T Wve
o @ % o o e é‘: Yo e, FeLee W ®
e © & e, "ﬁ o, ’0 & e e ° ¢ e
e 8o o 1A LT @ ®
" o @ v ;
#e, St Ty, PR Y AL RryoRs S ., " .
® Yo e ‘1-":"»" .. o "'a“%:"“‘u o PV e
o g e WIS TR e WP S @ 2 AR T
o e y‘\.«u e g Nete SFge e e o .
_ Y P . ® u
e oo Y % el “Fuse v e’ v ve
L™ o & o, © oA e KAt (4
LR “e ..,\&0‘-? :’,‘,u V‘:oi’.u u"\-i“ 'JO & P S
e @ %] ST e w v ©
¢, e s ¢ vy @ &
@, @ w @ & &) > e o & @
“ o o ;}“ v e @ ve
(] o “ f‘ % ® .
® 5 0 : o ¥ o b Yo s??'{" “ U‘US’&O:"Q“\’%‘;‘ “'J».,u? o o F
@ e] . d COR- AKX J ! ild @
® o e © O ®
e GRSt v e T e o
."u Fee &] u'uo.g' ~°~ % : :“,}:’ &wyu."vv & ou ¢ P
] & L L
© _ % % . ok ,v,“k‘_‘ ol i?u"‘»“v“-;é“"z, L oy
L Fele % @ o ¢ © ¢ ® @
e L4 % eP, e ¢ 6@ EJFS Yo ¢ @
Uo o e oe @ % R & @:'e‘ Y ‘:‘ﬁt‘y)
® fel® ©% © yre B LA ® ©
bg U8 oo, o K @%Q Y ¢ St o & o G*
R Tt e LA ISt R e
¢ @ U et e e S iR te o TO
. @ % Tgew [, e gRRS e
@ ® @ @ ?!\30 oY% ®e 6 vy *
L] © &) ¢ & e 9% e % e,
) 4 @ 3 L. L ® ee e w ® e
PR e bg T LN APy S oy e
Q2 sw Y5 e, o WO @ o ® &
® @ o ® P '] e ¢
Go @ CRCIES %0,",‘ ¢ ¢ “
e . e 5 . LS e @
Y ot e® L el y'_’." ..v"u “u: N e
& © o, % Yw g e ®7C]
(] o8 ©) ® e
LT e t; @ c @ . e @ ")
‘:.H b N o ° @ ® ; t c e
3 LI 3 @, o
(3 ® v ¢ ® ®
¢ e « °
® ¢ ¥ b ©

Figure 3.4: VMD molecule display.

Next, go to the menu and choose File—New Molecule.... Select Lattice Microbes in the Determine file
type: drop down and browse to the file bimol-rdme . 1m. Finally, press the Load button (see Figure [3.3).

The trajectory should load with 101 frames. Initially, the VMD OpenGL display will show only small
points for each molecule. Change the representation by choosing Graphics— Representations... from the
menu and then changing the Drawing Method drop down to be VDW. Now the molecules should appear as
spheres. Next, change the Coloring Method drop down to be Type and molecules of different types should

appear in different colors, as shown in Figure [3.4] Press the triangular play button to play the simulation
trajectory.

Finally, you may use the Selected Atoms text field in the Graphical Representations dialog to change
which molecules are displayed. Change the text from “all” to “name particle and type 1” to show
only A molecules. Likewise you can use “name particle and type 2” and “name particle and
type 3” to view molecules of type B and C respectively.

3.1.6 Importing an SBML reaction model

Finally, we will show how you can use SBML files to set the reaction model, in addition to specifying the
reaction matrices as shown above. First, copy the following SBML text into a file named bimol . sbml

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level3/versionl/core" level="3" version="1">
<model id="bimolecular" substanceUnits="item" timeUnits="second"
volumeUnits="1litre" extentUnits="item">
<listOfUnitDefinitions>

16

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second"

</1listOfUnits>
</unitDefinition>

exponent="-1" scale="0" multiplier="1"/>

<unitDefinition id="per_item_per_second">

<listOfUnits>
<unit kind="item"

<unit kind="second"

</1listOfUnits>
</unitDefinition>

scale="0" multiplier="1"/>
scale="0" multiplier="1"/>

exponent="-1"
exponent="-1"

<unitDefinition id="per_molar_per_second">

<listOfUnits>

<unit kind="litre"

<unit kind="mole"

exponent="1" scale="0" multiplier="1"/>
exponent="-1" scale="0" multiplier="1"/>

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>

</1listOfUnits>
</unitDefinition>
</listOfUnitDefinitions>
<listOfCompartments>
<compartment id="cell"

size="1le-15"

spatialDimensions="3"

constant="true"/>

</listOfCompartments>
<listOfSpecies>
<species id="A"

compartment="cell"

initialAmount="1000"

hasOnlySubstanceUnits="true" boundaryCondition="false"
constant="false"/>

<species id="B"

compartment="cell"

initialAmount="1000"

hasOnlySubstanceUnits="true" boundaryCondition="false"
constant="false"/>

<species id="C"

compartment="cell"

initialAmount="0"

hasOnlySubstanceUnits="true" boundaryCondition="false"
constant="false"/>

</listOfSpecies>

<listOfReactions>
<reaction id="Forward"
<listOfReactants>
<speciesReference

<speciesReference
</listOfReactants>
<listOfProducts>

<speciesReference

</listOfProducts>
<kineticLaw>

<math xmlns="http:

<apply>
<divide/>

<apply>

reversible="false"

fast="false">

species="A" stoichiometry="1"
constant="true"/>
species="B" stoichiometry="1"
constant="true"/>

species="C" stoichiometry="1"
constant="true"/>

//www.w3.0rg/1998/Math/MathML">

<times/>
<ci> k1 </ci>
<ci> A </ci>

17

<ci> B </ci>
</apply>
<apply>
<times/>
<csymbol encoding="text"
definitionURL="http://www.sbml.org/sbml/symbols/avogadro"/>
<ci> cell </ci>
</apply>
</apply>
</math>
<listOfLocalParameters>
<localParameter id="k1l" value="1.07e5"
units="per_molar_per_second"/>
</listOfLocalParameters>
</kineticLaw>
</reaction>
<reaction id="Reverse" reversible="false" fast="false">
<listOfReactants>
<speciesReference species="C" stoichiometry="1"
constant="true"/>
</listOfReactants>
<listOfProducts>
<speciesReference species="A" stoichiometry="1"
constant="true"/>
<speciesReference species="B" stoichiometry="1"
constant="true"/>
</listOfProducts>
<kineticLaw>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply>
<times/>
<ci> k2 </ci>
<ci> C </ci>
</apply>
</math>
<listOfLocalParameters>
<localParameter id="k2" value="0.351" units="per_second"/>
</listOfLocalParameters>
</kineticLaw>
</reaction>
</listOfReactions>
</model>
</sbml>

Next, create a simulation file from the SBML file:
[user@host gs/bimol]$ 1lm_sbml_import bimol-cme-sbml.lm bimol.sbml
The reaction model is now ready to be simulated:

[user@host gs/bimol]$ 1m_setp bimol-cme-sbml.lm writeInterval=le-3 maxTime=lel
[user@host gs/bimol]$ Im -r 1-100 -ws -f bimol-cme-sbml.lm

18

Bibliography

[1] Roberts, E, Stone, JE, Sepulveda, L, Hwu, WMW, Luthey-Schulten, Z (2009) Long time-scale simu-
lations of in vivo diffusion using GPU hardware. The Eighth IEEE International Workshop on High-
Performance Computational Biology.

[2] Roberts, E, Magis, A, Ortiz, JO, Baumeister, W, Luthey-Schulten, Z (2011) Noise contributions in an
inducible genetic switch: A whole-cell simulation study. PLoS Comput. Biol. 7:¢1002010.

[3] Roberts, E, Stone, JE, Luthey-Schulten, Z (2012) Studying Lattice Microbes using high-performance
simulations of the reaction-diffusion master equation. J. Comp. Chem. In press.

19

	List of Figures
	Introduction
	Installation
	System requirements
	Obtaining source and binary distributions
	Installing a precompiled binary
	Installing from source code
	Satisfying external dependencies
	Unpack the source distribution
	Configuring the build for your local environment
	Build and install the software

	In case of difficulty

	Quick-Start Guide
	Simulating a bimolecular reaction
	Building the models
	Running the simulations
	Looking at the simulation output
	Analyzing a simulation using Matlab
	Visualizing a trajectory using VMD
	Importing an SBML reaction model

	Bibliography

