Contact Info:

For White Gruop Administrative assistant please email:

M. Christina White
Department of Chemistry
University of Illinois
470 Roger Adams Laboratory
600 South Mathews Ave.
Urbana, IL 61801
(217) 333-6173


Among the frontier challenges in chemistry in the 21st century are (1) increasing control of chemical reactivity and (2) synthesizing complex molecules with higher levels of efficiency. Although it has been well demonstrated that given ample time and resources, highly complex molecules can be synthesized in the laboratory, too often current methods do not allow chemists to match the efficiency achieved in Nature. This is particularly relevant for molecules with non-polypropionate-like oxidation patterns (e.g. Taxol). Traditional organic methods for installing oxidized functionality rely heavily on acid-base reactions that require extensive functional group manipulations (FGMs) including wasteful protection-deprotection sequences. Due to their ubiquity in complex molecules and inertness to most organic transformation, C-H bonds have typically been ignored in the context of methods development for total synthesis. My laboratory has initiated a program to develop highly selective oxidation methods, similar to those found in Nature, for the direct installation of oxygen, nitrogen and carbon functionalities into allylic and aliphatic C-H bonds of complex molecules and their intermediates. Unlike Nature which uses elaborate enzyme active sites, we rely on the subtle electronic and steric interactions between C-H bonds and small molecule transition metal complexes to achieve high selectivities. Gaining a fundamental and predictive understanding of these interactions through mechanistic studies is one of the main goals and discovery engines of our research. Using these methods, my group aims to develop novel strategies for streamlining the process of complex molecule synthesis. Collectively, we aim to change the way that complex molecules are constructed by redefining the reactivity principles of C-H bonds in complex molecule settings.

New Reactions Novel Mechanisms Strategies for Streamlining Synthesis
unique visitor counter