raphy is "Scientist as Catalyst".

At the close of his book, Djerassi confides to us how he believes that his life is about to undergo a phoenix-like rebirth wherein he will conclude his activities in the laboratory and now embark on a very strong artistic focus with special emphasis on serious literary works. One senses that he may be an almost unique individual able to bridge C. P. Snow's two cultures. Already, his first major effort in this direction, the novel *Cantor's Dilemma*, has attracted critical acclaim, with more novels in the works.

In this reviewer's opinion, by taking serious risks involving candor and self-expression (in a way that mirrors his own life history), Djerassi has managed to write an intensely personal document that not only describes his own career, but also manages to orient the reader toward the significant struggles that have gone on at the interface between organic chemistry and society at large. In effect, this book provides thoughtprovoking reading for contemporary scientists who are troubled with the controversial image that so much of society has of the chemical enterprise. John Belletire, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221.

LETTERS

The Mines of Schwaz

Readers of the review of the *Schwazer Bergbuch* (Issue 8, Winter 1990) may like to know that the old mine workings at Schwaz can be visited. Silver was mined there for about 500 years, until 1900, and several of the many kilometers of galleries inside the mountain are accessible to the public in complete safety. The entrance is just above Schwaz, about 35 kilometers east of Innsbruck in the valley of the River Inn, and as the route is itself attractive and Schwaz has some fine old buildings, a visit makes a good excursion by car or bus for anyone on holiday in that part of Austria. The *Silberbergwerk* is open from 9 am to 5 pm every day except from 1 November to 26 December each year, and there are frequent guided tours, for a small charge, lasting about an hour.

William A. Smeaton, University of London

The Nascent State

The article on the nascent state (Issue 6, Spring 1990, pp. 26-36) cited Priestley in 1790 as an early user of the term, antedating an *Oxford English Dictionary* citation for Kirwan of 1796. I have often wondered if the term was not part and parcel of phlogistic doctrine; both Priestley and Kirwan were phlogistonists and I have the impression that the theory was much involved (in ways that are hard for me to understand) with ideas of birth and death. I have never checked Becher or Stahl to discover if they, perhaps, worried about "nascent" (*freiwerdend*) materials. I have also been struck with how often the term "nascent" appeared in areas other than natural philosophy in 18th century England. Perhaps one reason it caught on so firmly in chemical literature was because the same term found such frequent use in general speech. Readers might also be interested to know that Davy first discussed the ability of the voltaic pile to generate "nascent" hydrogen in 1800:

If the ratio between the quantities of the oxygen and the hydrogen produced from different wires be always the same, whatever substances are held in solution by the water connected with them, this nascent hydrogen will become a powerful and accurate instrument of analysis (*Nicholson J.*, **1800**, *4*, 281).

June Z. Fullmer, Ohio State University

FROM THE CHAIR

Conventional wisdom has it that scientists seldom show an interest in the history of science until their active research careers are over and then only because they are interested in securing a place for themselves in the historical record. Were this really true, one would expect that histories of chemistry would be written only by chemists in their 60s and 70s and that the Division of the History of Chemistry would be largely populated by retirees. As Colin Russell has recently shown (Brit. J. Hist. Sci., 1988, 21, 3-13), the first of these premises is definitely false and, in fact, many of the outstanding histories of chemistry written in the 19th century were authored by chemists at the beginning, rather than the end, of their active research careers. Similarly, the results of a recent demographic study by the ACS fail to show any preponderance of sexa- and septuagenarians in the Division. Indeed, the age profile is about what one would expect for any group of scientists, with a maximum for chemists in their 40s and 50s and smaller numbers as one moves toward both younger and older age brackets. About 14% of the Division is between the ages of 21-30, 17.2% between the ages of 31-40, 19.4% between the ages of 41-50, 20.9% between the ages of 51-60, 14.9% between the ages of 61-70, and 9.8% above 70 (these figure do not total to 100% because not everyone reported this information). The data also show that 23.3%, or nearly a quarter, of the Division has joined since 1986, reflecting our rapid growth in recent years, spurred in part by the decision to begin publication of the Bulletin.

Other statistics are less surprising. 81.5% of the Division is male, reflecting the general preponderance of males in all fields of chemistry; 91.1% of the Division is domestic; 52.6% hold doctoral degrees in chemistry, with 82.2% holding chemical degrees of some sort. The single largest occupational group in the Division is university and college teachers,