Postulates of Quantum Mechanics

1. **Wavefunction**

 The state of a system can be fully specified by its wavefunction in position space, which is a function of position \(\Psi(\mathbf{r}; t) \), or by its wavefunction in momentum space, \(\Psi(\mathbf{p}; t) \).

 The probability of finding the particle within a volume \(d\mathbf{r} \) around point \(\mathbf{r} \) is equal to \(| \Psi(\mathbf{r})|^2 \, d\mathbf{r} \). In order for the probability of finding the particle anywhere to be equal to unity, we require wavefunctions to be normalized:

 \[
 \int d\mathbf{r} |\Psi(\mathbf{r})|^2 = 1.
 \]

2. **Operators**

 States are transformed by linear operators:

 \[
 \hat{A}(\alpha \Psi_1 + \beta \Psi_2) = \alpha \hat{A} \Psi_1 + \beta \hat{A} \Psi_2.
 \]

 The commutator of two operators \(\hat{A}, \hat{B} \) is defined as

 \[
 [\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A}.
 \]

 If the commutator of two operators is equal to zero we say that the operators commute. This is not always the case.

 To every physical observable corresponds a Hermitean operator. An operator \(\hat{A} \) is called Hermitean if

 \[
 \int d\mathbf{r} \Psi_1^*(\mathbf{r}) \hat{A} \Psi_2(\mathbf{r}) = \left \{ \int d\mathbf{r} \Psi_2^*(\mathbf{r}) \hat{A} \Psi_1(\mathbf{r}) \right \}^*
 \]

 for any two wavefunctions \(\Psi_1, \Psi_2 \).

3. **Uncertainty principle**

 The momentum operator is a vector with components \(\hat{p}_i = -i\hbar \frac{\partial}{\partial x^i} \), etc.
Therefore the operators for position and momentum satisfy the commutation relation
\[
\left[\hat{x}, \hat{p}_x \right] = i\hbar.
\]
This means that it is not possible to determine simultaneously the position and momentum of a particle to precision better than Planck’s constant:
\[
\Delta p_x \Delta x \geq \frac{\hbar}{2}.
\]

4. Measurement

A given physical observable can take only certain values, which are the eigenvalues of the corresponding quantum mechanical operator.

When the wavefunction \(\Psi \) is an eigenfunction of the operator \(\hat{A} \) corresponding to the observable of interest, the determination of \(A \) always yields one result, the corresponding eigenvalue \(A_n \) of \(\hat{A} \). The state of the system changes to \(\Phi_n \) as a result of this measurement. When \(\Psi \) is not an eigenfunction of \(\hat{A} \), a single measurement of \(A \) yields a single result which is one of the eigenvalues of \(\hat{A} \); the probability that a particular eigenvalue \(A_n \) is measured is equal to \(|c_n|^2 \), where \(c_n \) is the coefficient of the eigenfunction \(\Phi_n \) in the expansion of the wavefunction \(\Psi \). Thus, the average of many measurements is given by the expectation value
\[
\langle A \rangle = \int d\mathbf{r} \Psi^*(\mathbf{r}) \hat{A} \Psi(\mathbf{r}).
\]

5. Time evolution

The time evolution of states satisfies the time-dependent Schrödinger equation,
\[
i\hbar \frac{\partial}{\partial t} \Psi(t) = \hat{H} \Psi(t)
\]
where \(\hat{H} \) is the Hamiltonian operator. Thus, usually (in Cartesian coordinates, assuming no magnetic fields are present) \(\hat{H} \) has the form
\[
\hat{H} = \frac{\hat{p}^2}{2m} + \hat{V}(\mathbf{r},t) = -\frac{\hbar^2}{2m} \nabla^2 + \hat{V}(\mathbf{r},t)
\]
where \(V \) is the potential energy operator (which often is independent of time).