PROBLEM THERMO1

For a reversible process show the relations:

(a) \[dq = \left[\left(\frac{\partial U}{\partial T} \right)_p + P \left(\frac{\partial V}{\partial T} \right)_p \right] dT + \left[\left(\frac{\partial U}{\partial P} \right)_T + P \left(\frac{\partial V}{\partial P} \right)_T \right] dP \]

(b) \[\left(\frac{\partial U}{\partial T} \right)_P = c_p - PV \alpha \]

(c) \[\left(\frac{\partial U}{\partial P} \right)_T = PV \kappa_T - (c_p - c_v) \frac{\kappa_T}{\alpha} \]

where \(\alpha \) and \(\kappa_T \) are the coefficient of thermal expansion and isothermal compressibility factor, respectively.