Biochemical and Thermodynamic Characterization of Compounds That Bind to RNA Hairpin Loops: Toward an Understanding of Selectivity†

Jason R. Thomas, Xianjun Liu, and Paul J. Hergenrother*

Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801

Received April 14, 2006; Revised Manuscript Received July 11, 2006

ABSTRACT: Elucidation of the molecular forces governing small molecule–RNA binding is paramount to the progress of rational design strategies. The extensive characterization of the aminoglycoside–16S rRNA A-site interaction has deepened our understanding of how aminoglycosides bind to their target and exert their antimicrobial effects. However, to date no other RNA binding compounds have undergone such rigorous evaluation, and in general the origins of small molecule–RNA binding remain a mystery. We recently reported the identification of small molecules, dimers of 2-deoxystreptamine, which are able to bind selectively to RNA tetraloops and octaloops, respectively [Thomas, Liu, and Hergenrother (2005) J. Am. Chem. Soc. 127, 12434–12435]. Described herein is the biochemical and biophysical characterization of the RNA binding properties of the most selective compound, B-12, as well as closely related analogues. These studies further substantiate that B-12 is indeed selective for RNA octaloop sequences and indicate that the origin of this selectivity may lie in B-12’s unusual binding mode, in which entropic factors are major contributors to the overall binding energy. In fact, isothermal titration calorimetry (ITC) experiments indicate that the binding of B-12 and most of its analogues is associated with a strong entropic contribution to the total binding energy. This is in stark contrast to the aminoglycosides, for which favorable enthalpy typically provides the driving force for binding. These studies are the first to examine small molecule–RNA hairpin loop binding in detail and are a necessary step toward the design of compounds that are specific binders for a given RNA sequence.

Recent estimates suggest that only a subset of the thousands of proteins responsible for disease onset and progression may actually be “druggable”, meaning that with current technologies only a small portion of the proteome has appropriate binding pockets for small molecule therapeutics (1–3). To modulate the function of the ~85–90% of proteins that cannot be targeted with small molecules, other strategies are needed. Dervan and co-workers have developed a general paradigm for the design of small molecules that target DNA in a sequence-specific manner, allowing for alteration of gene expression (4–7). Several high-profile success stories have emerged from this work, and the precise scope and limitation of such small molecule–DNA binders are still being defined (8, 9). An alternative approach is the direct targeting of mRNA with small molecules. Single-stranded mRNA folds to produce regions that form both canonical and noncanonical base pairs, resulting in hairpin loops, internal loops, and bulges. These unique RNA secondary structures are thought to provide suitable pockets for binding to small molecules (10). Using small molecules to directly target mRNA could provide a complementary means to modulate protein levels, provided that compounds that are selective for a particular message from the transcriptome could be developed (10–15).

† This work was supported by the National Institutes of Health (NIGMS R01-GM68385). P.J.H. is a fellow of the Alfred P. Sloan Foundation.
* Corresponding author. E-mail: hergenro@uiuc.edu. Phone: (217) 333-0363. Fax: (217) 244-8024.

A naturally occurring system demonstrating the druggability of transcripts is that of the riboswitch. Riboswitches are a class of mRNAs which harbor a binding site for a small molecule metabolite in either the 5′ untranslated region (UTR) or 3′-UTR; the small molecule binding event regulates translation (16–28). These regulatory RNAs consist of an aptamer domain (the ligand binding site) and an expression platform (the region that undergoes conformational change to alter translational efficiency). The aptamer domains demonstrate exquisite specificity and have a range of binding affinities [1 nM (20) to 30 μM (22)] for their respective ligands. This combination of high specificity and strong binding affinity allows riboswitches to perform central tasks in many biochemical pathways by means of ligand-induced allosteric changes in the mRNA conformation. The clinical utility of the aminoglycosides also has demonstrated that RNA is indeed a druggable target (12, 14). These antibiotics target the A-site decoding region of the 16S rRNA present in prokaryotes. As antimicrobial agents, the aminoglycosides have been in use in the clinic for over half a century and have enjoyed varying degrees of success, with their ototoxicity and nephrotoxicity placing limits on their broader application (29).

On the basis of the success of the aminoglycosides and the discovery of riboswitches, there is little doubt that targeting RNA could be a viable therapeutic strategy. However, examples where exogenously added small molecules are used to selectively target a given mRNA in a cellular context are extremely rare (30, 31). This is likely
because small molecules discovered during in vitro experiments have a propensity to bind multiple RNA targets of unrelated sequence and structure (32–37); specifically, the promiscuity of aminoglycosides is generally attributed to their ability to undergo conformational adaptation with highly flexible RNA binding pockets, thus allowing them to fit into a variety of RNA binding sites (11, 13). Generally, RNA binding small molecules associate to regions of the RNA A-form helix that are perturbed by mismatched base pairs (10). RNA binding small molecules (such as aminoglycosides) tend to bind internal loops and bulged regions (35, 36), while compounds possessing the capacity to bind to hairpin loops are comparatively rare (38–41).

The current understanding of the fundamentals of small molecule–RNA interactions is derived nearly exclusively from studies with aminoglycosides; among these, the aminoglycoside–16S rRNA A-site interaction is the best characterized system. Through biochemical analysis, electrostatic interactions were determined to play a primary role in aminoglycoside–RNA binding. In a series of papers, Pilch and co-workers explicitly determined that aminoglycoside protonation is coupled with complexation and that enthalpy is the major contributor to the total binding energy at physiological pH; entropic factors become important at pH 5.5 (42–44). Beyond biochemical and biophysical characterization, structural data [NMR (45) and crystallographic (46–50)] have unveiled the diverse array of direct and water-mediated contacts between the aminoglycosides and the A-site.

Far less progress has been made with non-aminoglycoside small molecules. As such, it remains unclear if the lessons learned from the 16S A-site studies are directly transferable to other aminoglycoside–RNA interactions, let alone those involving non-aminoglycoside small molecules. We have previously disclosed the first class of small molecules, dimers (40). From this initial design a focused combinatorial library of bistriazole DOS dimers was synthesized, and from this library of 105 compounds, five were identified as selective ligands for RNA octaloops relative to RNA tetra-, hexa-, and heptaloops (41).

Hairpin loops are a predominant and functionally significant class of RNA secondary structures, as they provide sites of nucleation for RNA folding (51), and participate in RNA–protein (52, 53) and RNA–RNA interactions (54). The prevalence of RNA hairpin loop size and sequence is likely related to its thermodynamic stability. Based solely on hairpin loop size hexa- and heptaloops have been determined to be the most thermodynamically stable, as six to seven nucleotides present the ideal length for spanning the A-form helix (51, 55). However, the sequence of hairpin loops can greatly contribute to the overall stability. Several RNA hairpin loops smaller than hexaloops have been identified to be significantly more stable than expected by nearest neighbor calculations. The UUCG (56), GNRA (57), and YNMG (58) tetraloops are representative cases of primary sequence dictating hairpin loop stability; such exceptionally stable hairpin loops are frequently observed motifs in RNA folding (57). RNA hairpin loops of eight or more nucleotides are penalized by unfavorable entropy of loop formation; thus, large hairpin loops are significantly less stable than those previously mentioned (51, 55). Due to their decreased stability, larger RNA hairpin loops are less frequently observed and are thus relatively unique molecular targets for exploitation by small molecules.

Described herein are experiments aimed at understanding the origins of small molecule–RNA loop size selectivity by testing the most selective compound, B–12, and closely related analogues (B–11, B–13, and B–14) (see Figure 1A) in a myriad of biochemical and biophysical assays. From these experiments we were able to determine that the DOS dimers tested generally exhibit no pH dependence of binding, have a greatly reduced contribution of electrostatic free energy (ΔG′obs) to the total free energy (ΔGtotal) of binding, and bind to RNA octaloops in an entropically driven fashion at physiological pH. These results are in distinct contrast to previous studies performed with the aminoglycoside–16S rRNA A-site system (42–44), thus emphasizing that the understanding of RNA–ligand interactions remains incomplete and that truly RNA structurally specific small molecules will likely have properties considerably different from their nonselective aminoglycoside counterparts.

MATERIALS AND METHODS

Materials. All reagents were obtained from Fisher unless otherwise stated. All solutions were made with Milli-Q purified water. All RNAs utilized in binding assays were purchased from Dharmacon Research with a 3′-terminal fluorescein modification. The Escherichia coli tRNA mixture was purchased from Fluka. DOS dimers were synthesized as described (41).

Fluorescence Binding Assay. The ligand solutions were prepared as serial dilutions in TM1 buffer (10 mM Tris, 1 mM MgCl2, pH 7.5) at a concentration four times greater than the desired final concentration to allow for the subsequent dilution during the addition of the RNA solution. The appropriate ligand solution (25 μL) was then added to a well of a black 96-well plate (Nunc 237105). Refolding of the RNA was performed using a thermocycler as follows: The RNA, stored in 10 mM Tris and 0.5 mM EDTA, pH 7.5, was first denatured by heating to 95 °C for 2 min; the temperature was then dropped 0.1 °C/s until the temperature reached 25 °C. After refolding, the RNA was diluted to a working concentration of 37.5 nM through addition of the appropriate amount of TM1 buffer (<4 μL added into 1900 μL of buffer). The tube was mixed by inversion, and then 75 μL of the RNA solution was added to each well containing ligand. This dilution brought the final RNA concentration to 28 nM. The fluorescence was measured on a Criterion Analyst AD (Molecular Devices) with an excitation filter of 485 ± 15 nm, an emission filter of 530 ± 15 nm, and a 505 nm dichroic cutoff mirror. The binding was allowed to proceed to equilibrium, which was monitored in 15 min intervals. Equilibrium was determined when three identical curves were obtained. All curves were fit to a logistic dose–response model using TableCurve 2D v5.01 (eq 8076):

\[
y = \frac{a}{1 + (x/K_d)^c}
\]
where a is the limit that the curve approaches. All binding assays were performed in triplicate. In all cases the error bars on graphs represent one standard deviation from the mean. The tRNA competition experiment was performed as previously outlined. In brief, a 100-fold excess (base) relative to the fluorescently labeled RNA was refolded in 1900 μL of 10 mM Tris, pH 7.5, 2 mM MgCl₂, and 100 mM NaCl at 95 °C for 2 min and allowed to cool to ambient temperature. After the tRNA mixture was cooled, the fluorescence binding assay was carried out as described above with the exception that the fluorescently labeled RNA was added to the refolded tRNA mixture.

pH-Dependent Fluorescence Binding Assay. The pH-dependent binding studies were performed as described in the fluorescence binding assay protocol, above, except that in place of TM1 a buffer consisting of 10 mM Mops and 0.1 mM EDTA was used, and the pH values were adjusted accordingly.

Ionic-Dependent Fluorescence Binding Assays. Ionic dependence was assessed following the protocol for the fluorescence binding assay except that the final concentration of the NaCl used in each assay was 25, 50, 75, 100, and 125 mM for compounds B-11, B-13, and B-14. For B-12 the NaCl concentrations used were 100, 200, 300, 400, and 500 mM.

T7 RNAP Expression and Purification. Plasmid pT7-911 was the kind gift of Prof. Scott K. Silverman. An overnight culture of pT7-911 in XLI-Blue (Stratagene) grown in Luria broth (LB)/ampicillin (100 μg/mL) was used to inoculate a 1 L LB/ampicillin (100 μg/mL) culture. This 1 L culture was incubated at 37 °C, 225 rpm, until the OD₆₀₀ reached 0.4–0.6. At this point IPTG was added to the culture to a final concentration of 250 μM, and incubation at 37 °C, 225 rpm, was continued for a period of 4 h. The cells were then harvested by centrifugation at 6000g for 30 min. The supernatant was discarded, and the pellet was resuspended in 10 mL of cold binding buffer (10 mM Tris, pH 7.5, 100 mM NaCl, 5 mM β-mercaptoethanol, 5% glycerol, 5 mM imidazole). Cells were lysed by two passages through a French press, at 10000 psi. The lysate was centrifuged at 40000g for 30 min. The supernatant was separated from the pellet and incubated with 1.5 mL of Ni-NTA resin slurry (Qiagen) for 1 h at 4 °C. After this batch loading process, the supernatant and Ni-NTA agau resin were loaded onto an Econo-Pac disposable chromatography column (Bio-Rad). The column was washed with 10 mL of cold binding buffer,
Selectivity of Compounds That Bind RNA Hairpin Loops

Biochemistry, Vol. 45, No. 36, 2006 10931

10 mL of cold wash buffer (identical to binding buffer except 10 mM imidazole was added), and the His-tagged T7 RNAP was eluted with 10 mL of cold elution buffer (identical to binding buffer except 250 mM imidazole was added). All elution fractions were analyzed for the presence of protein using the Bradford dye reagent (Bio-Rad). All samples containing protein were combined and concentrated to ~8 mg/mL using the Centricon centrifugal concentration device, 10000 molecular weight cutoff (Millipore), and the expected molecular weight was confirmed by SDS–PAGE analysis.

T7 RNAP Transcription Runoff. All DNA used in the transcription process was purchased from Integrated DNA Technologies. The T7 template DNA oligo (5'-acg cgc gtt ata aga ctc act ata-3') was annealed to either the RNA I (tetraloop) template (5'-mcmg gcg cca aca ggc tac t-3'), RNA II (hexalooop) template (5'-mmggc gct aca cgc cta tag tga gtc tta cag gct ggc t-3'), RNA III (heptaloop) template (5'-mgmgc gct act act ggc cct ata ggt agt cgt att aca ggc tgc gt-3'), or RNA IV (octaloop) template (5'-mgmggc gct act gac tgc gcc tat agt gag tgc tct tae ggt gct-3'). All DNA templates used were purified by PAGE [20% acrylamide (29:1); 8 M urea gel] on a denaturing gel prior to use, and the molecular weights of the templates were validated by MALDI-MS.

All T7 transcription assays were performed on a 10 nmol scale. The T7 template and its corresponding RNA hairpin loop template were annealed by adding 10 nmol of each template to a 1.7 mL centrifuge tube containing 20 mM Tris, pH 8.0, 75 mM NaCl, and 0.5 mM EDTA, in a final volume of 1 mL. The 1.7 mL tube was incubated at 95°C for 3 min followed by incubation on ice for 5 min. This 1.0 mL template mixture was added to a 40 mL centrifugation tube (Nalge Nunc: 3146-0050) containing a 9 mL solution of Tris, NTPs, etc., such that the final concentration in 10 mL is as follows: 40 mM Tris, pH 8.0, 10 mM MgCl2, 10 mM DTT, 1 mM ATP, 1 mM GTP, 1 mM CTP, 1 mM UTP, 2 mM spermine, and 500 µL of T7 RNAP. The transcription reaction was then incubated at 37°C for 6 h after which 100 µL of 500 mM EDTA, 3 mL of 4 M NaCl, and 30 mL of cold 100% EtOH were added to the transcription reaction. The contents were then incubated at ~80°C overnight. The following morning the tube was spun at 40000g for 30 min. The supernatant was discarded, and the pellet was washed with cold 70% ethanol. After a 1 h incubation at ~80°C, the crude product was centrifuged again at 40000g for 30 min. After decanting, the pellet was dried by lyophilization. After the pellet was dried completely, it was resuspended in a minimal volume (typically 300 µL) of 10 mM Tris and 0.5 mM EDTA, pH 7.5, and PAGE purified [20% acrylamide (29:1); 8 M urea gel, 2 mm thickness]. The molecular weights of all products were verified by MALDI-MS.

Isothermal Titration Calorimetry (ITC). ITC measurements were performed at 25°C on a MicroCal VP-ITC (MicroCal, Inc., Northampton, MA). A standard experiment consisted of titrating 10 µL of a 500 µM ligand solution from a 250 µL syringe (rotating at 300 rpm) into the sample cell containing 1.42 mL of a 5 µM RNA solution. Each standard experiment was followed by a corresponding experiment where the ligand was titrated with buffer alone. The duration of injection was set to 20 s, and the delay between injections was 180 s. The initial delay prior to the first injection was 60 s. To derive the heat associated with each injection, the area under each heat burst curve (microcalories per second versus seconds) was determined by integration (using the Origin version 5.0 software; MicroCal, Inc., Northampton, MA). The heat associated with ligand solvation (ligand titrated with buffer) was subtracted from the corresponding heat associated with ligand–RNA injection to yield the heat due solely to ligand binding for each injection. The data fitting requirements were such that the thermodynamic parameters were derived from the curves that produced the lowest amount of deviation. In most cases fitting to a sequential site binding model of two or three binding sites gave the most accurate data. The additional sites are not detected in the Job plot analysis and likely represent low-affinity sites. Analogous low-affinity binding sites have previously been observed in the aminoglycoside–16S rRNA interaction (43). The buffer solution for the ITC experiments was 10 mM Tris (pH 7.5) and 0.1 mM EDTA. All RNAs utilized in ITC experiments were derived from T7 transcription runoff.

RESULTS

Size Specificity and Sequence Generality for the Binding of DOS Dimers to RNA. The determination of binding constants for small molecule–RNA interactions is a problem without a universal, generally applicable solution. A number of techniques have been developed for the determination of binding constants, such as displacement of a fluorescent ligand (33, 60, 61), gel shift (62), isothermal titration calorimetry (63, 64), surface plasmon resonance (65, 66), and electrospray ionization mass spectrometry (ESI-MS) (67). An alternative and convenient method is to use fluorescently labeled RNA, either with an unnatural base (34, 64, 68, 69) or via end-label (31, 40, 41, 70–73). When binding assays are performed with such fluorescently labeled RNAs, a dose-dependent, saturatable change in fluorescence is observed; such change in fluorescence is attributed to a conformational change in the RNA induced by the ligand upon complexation, which is often seen with small molecule–RNA interactions (11, 70, 74).

In our prior report, B-12 demonstrated excellent affinity and selectivity for RNA octalooops as compared to all other secondary structures tested (41). In this current work B-12 analogues were challenged in the same selectivity matrix; none of the B-12 analogues display any selectivity for RNA hairpin loop size (see Figure 1B). The positional isomer B-11 and pyridine containing B-14 show little (2–3-fold) preference for hairpin size, and the mesitylene-based B-13 exhibits no binding preference. It is interesting that a simple change in the projection of the DOS units off the aromatic ring leads to dramatic changes in specificity and affinity: B-11 binds the octaloop sequences with >10-fold weaker affinity than B-12. The data suggest that not only are the hydrophobic/hydrophilic properties of B-12 properly balanced for octaloop selectivity but also the geometric linkage of B-12 is superior for targeting octalooops. As shown in Figure 1B these DOS dimers exhibit no sequence dependence for RNA hairpin loop binding, suggesting that these molecules are indeed general RNA hairpin loop binding compounds.

Determination of Specificity for Various RNA Secondary Structural Elements. Inside the cell, a RNA targeting small molecule will encounter a multitude of differing RNA
A specificity ratio \(\left(\frac{K_d \text{(in the presence of competitor tRNA)}}{K_d \text{(in the absence of competitor tRNA)}} \right) \) can then be assessed by Job plots. During a Job plot assay the total molar concentration of ligand and RNA is kept constant, five times the \(K_d \) while the ligand:RNA ratio is varied. The stoichiometry of binding is the molar ratio that shows the largest amount of binding. Job plots were constructed for B-12 and B-13 binding to RNA octaloop IVa. For both B-12 and B-13 a maximal change in fluorescence occurs at a molar ratio of 1:1; thus the stoichiometry of binding is taken to be 1:1. All error bars represent one standard deviation from the mean.

Figure 2: Specificity of DOS dimers for different RNA secondary structures. All \(K_d \) values are listed in \(\mu M \) and were determined with the end-labeled method using the RNAs depicted with a fluorescein at their 3’ terminus. For RNAs V and VI (which are two strands that are annealed together) only one of the 3’ ends contains a fluorescein. The tRNA mixture is in 100-fold (base) excess to RNA IVa. The specificity ratio is defined as the \((K_d \text{(in the presence of competitor tRNA)})/(K_d \text{(in the absence of competitor tRNA)}) \); thus the larger the specificity ratio above 1.0 the less specific a molecule is for the target RNA. The asterisk indicates that the data were previously reported (41).

<table>
<thead>
<tr>
<th>Structure</th>
<th>Specificity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-11</td>
<td>>30.0 4.85 1.82 0.90</td>
</tr>
<tr>
<td>B-12</td>
<td>>25.0* 25.0 0.17 1.13</td>
</tr>
<tr>
<td>B-13</td>
<td>6.07 14.95 10.08 21.0</td>
</tr>
<tr>
<td>B-14</td>
<td>14.17 6.70 2.28 1.01</td>
</tr>
</tbody>
</table>

Figure 3: Determination of ligand binding stoichiometry as assessed by Job plots. During a Job plot assay the total molar concentration of ligand and RNA is kept constant, five times the \(K_d \), while the ligand:RNA ratio is varied. The stoichiometry of binding is the molar ratio that shows the largest amount of binding. Job plots were constructed for B-12 and B-13 binding to RNA octaloop IVa. For both B-12 and B-13 a maximal change in fluorescence occurs at a molar ratio of 1:1; thus the stoichiometry of binding is taken to be 1:1. All error bars represent one standard deviation from the mean.

Figure 4: Determination of Binding Stoichiometry. The observed selectivity of B-12 for RNA octaloops, in contrast to the more promiscuous B-11 and B-13 and B-14, could arise from differences in binding stoichiometry. Two common methods to determine stoichiometry of binding are ESI-MS (75) and Job plots (73). Job plots present a convenient format if one has a highly robust binding assay (76), which the end-labeled method provides. In a Job plot the ligand:RNA molar ratio is varied while the total molar concentrations remain constant. The stoichiometry of binding is determined by the molar ratio where maximal binding is observed. Experiments to construct Job plots were carried out for compounds B-12 and B-13 binding to RNA IVa; B-11 and B-14 were omitted due to material constraints imposed by the Job plot that require that the total concentration of ligand and receptor be at least 5 times greater than the \(K_d \) (76). Through Job plot analysis it was determined that maximal binding response is found at a molar ratio of 1:1, which is indicative of a 1:1 binding stoichiometry (Figure 3). Thus it is reasonable to conclude that B-12’s RNA hairpin loop size selectivity is not the result of a unique stoichiometry of binding, as a nonselective analogue (B-13) exhibits the same binding stoichiometry.

Exploring the Role of Protonation-Coupled Binding. The electrostatic interactions between small molecules and RNA targets are an important criterion for binding and have been exploited as a means of enhancing affinity (77-79). Wang and Tor demonstrated that protonation states of individual amines are subtle contributors to the overall binding affinity of aminoglycoside–RNA interactions (80). Since then, Pilch and co-workers have extensively shown that the aminoglyco-
cosides exhibit a pH-dependent, or protonation-induced, binding to the A-site RNA (42–44, 64, 81, 82). These studies have revealed pH-dependent binding to be a hallmark of aminoglycoside–RNA interactions (44).

We investigated whether the DOS dimers exhibit protonation-coupled binding and if such an event could be the reason for the observed selectivity of B-12. The dissociation constants, as assessed by the end-label binding assay at a range of pH values (5.0–8.0, at intervals of 0.5 pH unit), showed little to no change for B-11, B-12, and B-13 with RNA IVa at the different pH values tested (Figure 4). This is perhaps not surprising as the amines on the 2-deoxystreptamine units should be fully protonated at all pH values from 5.0 to 8.0. As the protonation state of the 2-deoxystreptamines does not change in this pH range, no change in binding affinity would be expected. This is in contrast to the aminoglycosides, whose various amines have pK values that are quite different from one another and do exhibit pH-dependent RNA binding (44).

In contrast, B-14 exhibited a steep pH-dependent binding, beginning at pH 6.5 and reaching maximal binding at pH 5.5; the affinity of B-14 for octaloop IVa increased over 150-fold (Kd 7.99 μM at pH 8.0 to Kd 0.05 μM at pH 5.5) at lower pH values. The marked difference in binding affinity can likely be attributed to protonation of the pyridine nitrogen, whose pK in water is ~5.3. Compound B-14 was then tested for pH-dependent, hairpin loop size selectivity by determining its dissociation constant with RNAs I, II, III, and IV at pH 5.5; however, even though strong binding affinity was retained (average Kd = 0.23 ± 0.07 μM), no selectivity was observed (see Supporting Information).

Dependence of Binding on Ionic Strength. As described above, the observed selectivity of compound B-12 for RNA octaloops does not appear to be the result of differing binding stoichiometries or a difference in protonation-coupled binding events. However, the selectivity could potentially be due to a difference in the number of electrostatic contacts made upon complexation. To provide insight into such molecular details, the end-label method was utilized in binding assays with varying concentrations of Na+. In conjugation with van’t Hoff analysis (Figure 5). The following relationship between dissociation constant and sodium concentration has previously been derived (83):
a slope of -2.0 ± 0.1 in these experiments, which suggested that as few as two amines of this compound could contact the RNA. Compounds B-13 and B-14 make at least one amine contact (slopes of -1.5 ± 0.1 and -1.1 ± 0.2, respectively). Binding of compound B-11 showed a steep ionic dependence but failed to yield a linear dose-dependent relationship upon further increase of NaCl and could not be subjected to van’t Hoff analysis. These studies provide our first insight into a possible reason for the observed selectivity of B-12 for RNA octaloops: B-12 exhibits the strongest electrostatic interactions with RNA IVa. The higher salt concentrations required to perform the van’t Hoff analysis was an initial indication of the strength of the electrostatic interaction between B-12 and RNA IVa. van’t Hoff analysis confirmed that B-12 likely makes more amine contacts with the RNA than either B-13 or B-14.

The portion of the free energy associated with electrostatic interactions can be determined by the relationship:

$$\Delta G_{elec} = ZqRT \ln([\text{Na}^+])$$

where Zq is the slope determined through linear regression analysis. The ΔG_{elec} for compounds B-12, B-13, and B-14 were determined to be -2.2, -1.7, and -1.2 kcal/mol, respectively, when the Na$^+$ concentration is taken to 100 mM (see Table 1). The total free energy of binding can be derived from

$$\Delta G_{total} = -RT \ln(K_a)$$

where K_a is the association constant determined from the end-label method at 100 mM NaCl. Comparing the total free energy of binding with the electrostatic contribution, B-12, B-13, and B-14 appear to only derive approximately one-quarter of their total free energy of binding from these electrostatic interactions in the presence of 100 mM Na$^+$ (Table 1). This low level of electrostatic contribution is in stark contrast to aminoglycoside−A-site interaction in which at least half of the total binding free energy comes from electrostatic contributions (82).

Thermodynamic Parameters As Assessed by Isothermal Titration Calorimetry. Isothermal titration calorimetry (ITC) has proven to be a valuable tool for understanding the thermodynamic parameters of ligand−macromolecule binding. Data such as K_a, ΔG, ΔH, ΔS, and ΔC_p can be determined from a series of ITC experiments. Because the biochemical experiments above were unable to provide a clear descriptor of selectivity, ITC was used in an effort to dissect the different thermodynamic parameters. The K_a values derived from ITC also offer an independent means to determine specificity of B-12 for a given sized RNA hairpin loop.

ITC experiments were thus conducted with the four ligands and RNAs I, II, III, and IV. Recall that the end-labeled assay technique showed B-12 to be a strong binder to RNA IV (octaloop; $K_a = 0.32 \mu M$) but to have considerably weaker binding affinity for RNA I (tetraloop), RNA II (hexaloop), and RNA III (heptaloop; $K_a = 9.9$ to $>25 \mu M$; see Figure 1B). The data from the ITC experiments are displayed in Table 2, and a representative ITC trace is shown in Figure 6. Importantly, the K_a values from ITC largely agree with those derived from the fluorescence binding assays and RNase footprinting (41). In all experimental methods, B-12

![Figure 6: Determination of thermodynamic parameters by ITC. Shown is the titration of a solution of B-12 into RNA II at pH 7.5.](image)

Table 1: Calculated Free Energies of Binding in the Presence of 100 mM NaCl

<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔG_{total} (kcal/mol)</th>
<th>ΔG_{elec} (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-11</td>
<td>-6.7 ± 0.1</td>
<td>ND</td>
</tr>
<tr>
<td>B-12</td>
<td>-8.5 ± 0.1</td>
<td>-2.2 ± 0.1</td>
</tr>
<tr>
<td>B-13</td>
<td>-7.4 ± 0.1</td>
<td>-1.7 ± 0.1</td>
</tr>
<tr>
<td>B-14</td>
<td>-6.6 ± 0.1</td>
<td>-1.2 ± 0.1</td>
</tr>
</tbody>
</table>

The total free energy of binding was determined by the relationship $\Delta G_{total} = -RT \ln(K_a)$. ΔG_{elec} was determined from analysis of the van’t Hoff plots (see text).

Table 2: Thermodynamic Parameters As Determined by ITC

<table>
<thead>
<tr>
<th>Compound</th>
<th>K_a (μM)</th>
<th>ΔG (kcal/mol)</th>
<th>ΔH (kcal/mol)</th>
<th>ΔS (cal/(mol⋅K))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-11</td>
<td>2.32 ± 0.1</td>
<td>-7.7 ± 0.1</td>
<td>-1.3 ± 0.2</td>
<td>6.4 ± 0.2</td>
</tr>
<tr>
<td>B-12</td>
<td>12.5 ± 0.6</td>
<td>-6.7 ± 0.1</td>
<td>-12.4 ± 0.2</td>
<td>-5.7 ± 0.1</td>
</tr>
<tr>
<td>B-13</td>
<td>0.18 ± 0.01</td>
<td>-9.1 ± 0.1</td>
<td>-1.8 ± 0.1</td>
<td>7.3 ± 0.1</td>
</tr>
<tr>
<td>B-14</td>
<td>3.99 ± 0.1</td>
<td>-7.3 ± 0.1</td>
<td>-1.1 ± 0.2</td>
<td>6.2 ± 0.1</td>
</tr>
<tr>
<td>RNA II</td>
<td>48.6 ± 8.0</td>
<td>-5.9 ± 0.1</td>
<td>-16.1 ± 0.7</td>
<td>10.2 ± 0.6</td>
</tr>
<tr>
<td>RNA III</td>
<td>33.2 ± 2.9</td>
<td>-6.1 ± 0.1</td>
<td>-19.6 ± 0.9</td>
<td>-13.5 ± 0.8</td>
</tr>
<tr>
<td>RNA IV</td>
<td>19.4 ± 0.1</td>
<td>-7.4 ± 0.1</td>
<td>-1.5 ± 0.2</td>
<td>5.9 ± 0.3</td>
</tr>
<tr>
<td>RNA IV</td>
<td>35.0 ± 0.1</td>
<td>-8.0 ± 0.1</td>
<td>-0.63 ± 0.4</td>
<td>7.4 ± 0.3</td>
</tr>
</tbody>
</table>

* ΔG, ΔH, and ΔS are listed in kcal/mol.*
Selectivity of Compounds That Bind RNA Hairpin Loops

is selective for octaloop IV over all other loop sizes. From the ITC data, it would appear that $T\Delta S$ is an important contributor to B-12’s specificity as the entropic term is most favorable when binding to the octaloop (tightest binder) and most disfavored for binding the hexaloops (weakest binder). In fact, for all compounds tested the most favorable binding for a given compound against the series of RNAs is associated with the most favorable entropic contribution. This entropically driven binding event is unusual as the aminoglycosides binding to the 16S rRNA are driven by enthalpic association at physiological pH (47).

The lack of specificity of compound B-13 can also be explained through the ITC data. When comparing the thermodynamic parameters of B-12 and B-13 for RNA IV, one finds that both compounds exhibit nearly identical enthalpic and entropic terms. However, B-13 retains essentially constant enthalpic and entropic contributions when binding to the other hairpin loops. Conversely, the entropic contribution for B-12 becomes a detriment when binding to smaller sized RNA hairpin loops. The nearly constant enthalpic and entropic contributions for the binding of B-13 to all of the hairpin loops may explain the lack of selectivity of this compound. The thermodynamic profile of B-11 and B-14 for the series of hairpin loops reveals an inconsistent trend with respect to the entropic contribution, as B-11 and B-14 experience an enthalpic/entropic compensation when binding to the different hairpin loops while retaining a steady total free energy of binding.

DISCUSSION

There is an escalating interest in small molecule–RNA binding, both for fundamental biochemical studies and for medicinal applications. Beyond the ribosome, several RNAs have been suggested as targets for therapeutic intervention. The general development of small molecules that target 5'-UTRs has gained momentum (84, 85) and has met with various degrees of success in vivo (30, 31). Disruptors of RNA–protein interactions have been sought for combating HIV (86, 87), while interfering with RNA–RNA interactions has led to the development of a novel antibacterial strategy (31, 73). Additionally, the discovery of catalytic RNA has enabled the use of small molecules to target these unique active sites (88–93).

A standing challenge is to fully derive rules governing small molecule–RNA binding, such that structural- and sequence-specific ligands can be designed from first principles. However, targeting RNA with any degree of specificity has proven to be a demanding task. In an effort to develop the requisite specificity suitable for targeting RNAs in vivo, we envision a series of small molecule “modules” that are specific for the various types of RNA secondary structures. We thus seek to develop small molecules specific for RNA hairpin loops, others that selectively bind internal loops, and still others that recognize bulged regions. As (for moderately sized RNAs) RNA secondary structure can reliably be determined from its primary sequence (94), such a modular approach could allow any RNA to be targeted through linkage of appropriate modules.

In a first step we previously disclosed a class of small molecules, dimers of 2-deoxystreptamine (DOS dimers), which are able to bind to RNA hairpin loops (40). In a subsequent effort DOS dimers that displayed specificity for hairpin loop size were discovered (41). As this level of specificity for a RNA hairpin loop of a given size was unprecedented, we sought to understand the origins of this specificity by performing a series of biochemical and biophysical assays with B-12 (a compound highly specific for RNA octaloops) and structurally related derivatives.

Initially, a matrix of binding assays was designed to test the degree of size specificity, as well as to assess sequence preference. The RNAs utilized in the matrix include four RNA hairpin loops that are similar in sequence but vary in size, as well as a collection of tetra-, hepta-, and octaloops to assess sequence generality. The results from individual binding assays for each ligand against each RNA demonstrated that indeed B-12 is the lone compound that binds to RNA hairpin loops with any size specificity. Additional assays conducted revealed that neither differences in binding stoichiometry nor influence of ligand protonation could account for the observed specificity; all compounds tested yielded a 1:1 stoichiometry of binding, and their binding to RNA was either pH-independent (B-11, B-12, and B-13) or the pH dependence did not confer selectivity (B-14). Though these assays were unable to provide an explanation of the observed hairpin loop size selectivity, it was confirmed that the DOS dimers tested exhibit little to no primary sequence dependence in their RNA binding and can thus be considered general RNA hairpin loop binding modules.

Binding assays with varying concentrations of Na+ followed by van’t Hoff analysis allowed for a calculation of a lower limit estimate of the number of amines making contact with the RNA upon complexation. Interestingly, B-12 makes the greatest number of amine contacts, suggesting a greater electrostatic contribution for B-12 in its binding to RNA. By varying the ionic strength, the electronegative RNA is masked by the abundance of Na$^+$; hence a compound whose binding is dependent on electrostatic interactions will have a decreased affinity as the ionic strength increases. Of the compounds tested, higher concentrations of Na$^+$ were required to significantly affect the binding of B-12 to RNA IVa. Thus, these ionic-dependence studies revealed that B-12 likely makes the greatest number of electrostatic contacts and these electrostatic interactions contributed only \sim25% of its total binding energy.

Further insights into the DOS dimer–RNA interactions were gained through ITC experiments; ITC has proven to be a valuable tool in dissecting aminoglycoside–RNA interactions (42–44, 64, 81, 82). The ITC experiments confirm the binding specificity and binding affinities for the DOS dimers that were initially determined from the end-label method. Interestingly, the general trend emerged that favorable binding was associated with high entropic contributions. B-12 was the only compound tested whose entropic contribution to the total free energy of binding changed significantly depending on the size of the RNA hairpin loop. This is likely a factor in the observed selectivity of B-12 for RNA hairpin octaloops: B-12 makes the greatest number of electrostatic contacts, which may result in a favorable entropy due to cation release. Cation release is a common event in small molecule–nucleic acid interactions (95, 96).

The results uncovered during the course of this investigation reveal a binding profile for the DOS dimers that is quite unlike that of the aminoglycosides. pH-dependent binding
is a signature of aminoglycoside–RNA interactions (44); however, the majority of the compounds tested in this study do not show such a pH dependence. The electrostatic contribution to binding was severely reduced for the DOS dimers as compared to their aminoglycoside counterparts (59, 82). Thermodynamic analysis suggests that in order for the DOS dimers to bind favorably there tends to be an associated high entropic contribution. This entropic factor is not observed for the aminoglycoside–RNA binding; rather, enthalpic factors make up the majority of the binding energy in these cases (82). It is not clear at this time if the low enthalpic contribution is an intrinsic feature of the DOS dimer–RNA binding or a general necessity for small molecules that bind RNA hairpin loops; future experiments are being designed to address this issue.

The structure–activity relationship (SAR) between the various DOS dimers tested in this study reveals an unforgiving profile with regard to RNA octaloop selectivity. All structural deviations from B-12 resulted in the loss of RNA octaloop selectivity, and in the majority of cases these deviations also resulted in a loss of affinity for RNA octaloops. Numerous factors appear to be important for strong binding of DOS dimers to RNA hairpin loops. Hydrophobic interactions appear to enhance affinity, as B-13 retained binding affinities in the mid-nanomolar range for all hairpin loops tested. Also, protonation-coupled binding can enhance affinity markedly, as in the case of B-14, but this was neither a general phenomenon (as the other linkers lacked ionizable functional groups) nor did such coupling lead to selectivity. B-12 appears to be the only compound in which the entropic contribution to the binding affinity varies with hairpin loop size: for octaloops, the entropic parameter is strongly positive and hence provides a considerable driving force for binding, whereas for the smaller RNA hairpin loops, the entropic parameter becomes negative and is a detriment to strong RNA binding. It is not immediately apparent from the SAR how the structure of B-12 leads to these entropic differences. Ultimately, structural studies, in conjunction with molecular modeling, will be necessary for a comprehensive view of these interactions.

This study confirms that compound B-12 binds to RNA octaloops with high affinity and specificity. It also suggests that favorable entropy of binding can partially explain this binding preference, a somewhat surprising notion based on the known enthalpic contributions in the binding of aminoglycosides to RNA. It may thus be possible to design next generation compounds that are predisposed for binding to a RNA hairpin loop of a given size, and this may lead to a family of compounds, each of which is specific for a RNA hairpin loop of a certain size. Although less common than smaller loop sizes, RNA octaloops do exist in nature, as exemplified by the hepatitis C IRES (loop VIA in Figure 1B). The relative paucity of octaloops suggests that they could be targeted in a specific manner by small molecules. Only after a comprehensive set of rules for small molecule–RNA binding is fully elucidated can one begin to systematically target any RNA in the cell with small molecules.

SUPPORTING INFORMATION AVAILABLE

Full binding curves and all ITC data. This material is available free of charge via the Internet at http://pubs.acs.org.
Selectivity of Compounds That Bind RNA Hairpin Loops

Biochemistry, Vol. 45, No. 36, 2006 10937

BI0607296