Discovery and Canine Preclinical Assessment of a Nontoxic Procaspase-3–Activating Compound

Quinn P. Peterson¹, Danny C. Hsu², Chris J. Novotny¹, Diana C. West², Dewey Kim², Joanna M. Schmit³, Levent Dirikolu³, Paul J. Hergenrother¹,², and Timothy M. Fan⁴

Abstract

A critical event in the apoptotic cascade is the proteolytic activation of procaspases to active caspases. The caspase autoactivating compound PAC-1 induces cancer cell apoptosis and exhibits antitumor activity in murine xenograft models when administered orally as a lipid-based formulation or implanted s.c. as a cholesterol pellet. However, high doses of PAC-1 were found to induce neurotoxicity, prompting us to design and assess a novel PAC-1 derivative called S-PAC-1. Similar to PAC-1, S-PAC-1 activated procaspase-3 and induced cancer cell apoptosis. However, S-PAC-1 did not induce neurotoxicity in mice or dogs. Continuous i.v. infusion of S-PAC-1 in dogs led to a steady-state plasma concentration of ∼10 μmol/L for 24 to 72 hours. In a small efficacy trial of S-PAC-1, evaluation of six pet dogs with lymphoma revealed that S-PAC-1 was well tolerated and that the treatments induced partial tumor regression or stable disease in four of six subjects. Our results support this canine setting for further evaluation of small-molecule procaspase-3 activators, including S-PAC-1, a compound that is an excellent candidate for further clinical evaluation as a novel cancer chemotherapeutic. Cancer Res; 70(18): 7232–41. ©2010 AACR.

Introduction

Members of the caspase family of cysteine proteases are key players in both the initiation and execution of apoptosis. These enzymes exist in the cell as low-activity zymogens (proenzymes) that are proteolytically activated to the mature, highly active enzyme. Most critical to apoptosis is the proteolytic conversion of procaspase-3 to caspase-3. As both the intrinsic and extrinsic apoptotic pathways converge to activate procaspase-3, and as caspase-3 has >100 cellular substrates, the activation of procaspase-3 to caspase-3 is a pivotal and committed event in the apoptotic cascade. Interestingly, procaspase-3 is overexpressed in a variety of tumor histologies, including breast cancer (1), colon cancer (2), lung cancer (3), lymphoma (4), neuroblastoma (5), melanoma (6), and liver cancer (7), suggesting that a small molecule that activates procaspase-3 could have selectivity for cancer cells versus normal cells.

In 2006, we reported the discovery of a small molecule, called PAC-1 (Fig. 1A), which enhances procaspase-3 activity in vitro, induces death in cancer cells in culture, and has efficacy in multiple mouse xenograft models when administered orally as a lipid-based formulation or implanted s.c. as a cholesterol pellet (8). PAC-1 activates procaspase-3 in vitro through the chelation of inhibitory zinc ions (9), and derivative synthesis and evaluation reveal that the biological activity of PAC-1 is tied to having an intact ortho-hydroxy N-acyl hydrazone zinc-chelating motif (10). Evidence suggests that PAC-1 induces apoptotic death in cancer cells through the chelation of zinc from procaspase-3, most notably the colocalization of a fluorescent PAC-1 derivative with sites of cellular caspase-3 activity (10).

As the first procaspase-activating compound, experiments with PAC-1 can begin to define the potential of procaspase-3 activation as a viable anticancer strategy. To further develop PAC-1 as an experimental therapeutic for the treatment of cancer in humans, we sought to characterize the effect of this compound when administered i.v. and in more sophisticated in vivo tumor model systems, specifically canines with spontaneous cancer. The evaluation of experimental therapeutics in pet dogs with cancer offers many advantages over murine xenograft models (11). Herein, we report toxicity studies of i.v. administered PAC-1 in mice, and the discovery of a novel PAC-1 derivative (called S-PAC-1) that induces apoptosis in cancer cell lines in culture, is well-tolerated in mice and research dogs, and has moderate activity in a small trial of canine patients with spontaneous lymphoma. These results show the feasibility of S-PAC-1 administration to pet dogs with lymphoma as a means to evaluate the therapeutic potential of this class of compounds.
Materials and Methods

Cell lines and reagents

U-937, Jurkat, SK-MEL-5, HeLa, MDA-MB-231, and EL4 cells were obtained from the American Type Culture Collection (authenticated by short tandem repeat analysis) and maintained at low passage number. Two canine B-cell lymphoma lines (17-71 and GL-1) were provided by Dr. Steve Suter (North Carolina State University, Raleigh, NC). All cultures were maintained in RPMI 1640 supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin and grown at 37°C and 5% CO₂. PAC-1 was synthesized as previously described (8). S-PAC-1 was synthesized as described in the Supplementary Data. Ac-DEVD-pNA was synthesized as previously described (12). Chelex-treated HEPES-NaCl buffer is 50 mmol/L HEPES and 300 mmol/L NaCl and is treated with Chelex resin for 1 hour before use.

EGTA fluorescence titration assay

EGTA fluorescence titration assay was performed according to a developed protocol (13) exactly as previously reported (10).

Recombinant expression, purification, and evaluation of uncleavable procaspase-3 mutant (D₃A)

Procaspase-3 D₃A was expressed and purified exactly as previously reported (10).

Procaspase-3 activation

Recombinantly expressed, zinc-free procaspase-3 D₃A (7.5 μmol/L) in Chelex-treated HEPES-NaCl was incubated in the presence of ZnSO₄ (10 μmol/L), and the basal activity was assessed by addition of Ac-DEVD-pNA substrate (200 μmol/L) and monitored at 405 nm with a SpectraMax plate reader (Molecular Devices). After the basal activity was determined, DMSO, PAC-1, or S-PAC-1 was added to each sample to a final concentration of 50 μmol/L. Activity of each stock was assessed as described above every 20 minutes. The slope of each data set was used to determine the activity of the protein. Protein activity was normalized to a percent activity at each time point using a zinc-free sample as 100% activity and the DMSO control as 0% activity controls.

Apoptosis and cytotoxicity assays

Induction of apoptosis was assessed exactly as previously reported (10). Cell death IC₅₀ values were assessed by sulforhodamine B assay exactly as previously reported (10) or by MTS assay (Promega) according to the manufacturer’s suggested protocol.

Toxicity determinations of PAC-1 and S-PAC-1

PAC-1 and S-PAC-1 were formulated in 2-hydroxypropyl-β-cyclodextrin (HPβCD; ref. 14) as described in the Supplementary Data. C57/BL6 mice were administered varying doses of either PAC-1 or S-PAC-1 via tail vein injection. Mice were monitored by observation for a period of 24 hours for signs of toxicity, including sensitivity to touch, hypothermia, hunched posture, agitation, and rapid or depressed breathing.

Pharmacokinetics of S-PAC-1 in healthy research dogs and dogs with lymphoma

Four healthy male hound dogs weighing at least 30 kg were used for all preclinical pharmacokinetic studies. All dogs received a single dose of S-PAC-1 via i.v. injection. After a 2-week washout period, three dogs received a dosing regimen predicted to achieve and maintain a steady-state plasma concentration of 10 μmol/L, that is, i.v. S-PAC-1 delivered as a constant-rate infusion comprising a 10-minute loading dose, followed by a constant maintenance dose for 24 hours. Dogs with lymphoma were treated with i.v. S-PAC-1 in a constant-rate infusion for either 24 or 72 hours. For all dogs and dosing strategies, blood was drawn from the lateral saphenous vein and centrifuged, and plasma was stored at −80°C until analysis.

Toxicologic assessment of S-PAC-1 in healthy research dogs

Toxicity of S-PAC-1 administration was determined by serial weekly complete blood counts, serum biochemistry panels, and animal caregiver gastrointestinal toxicity observational scores adhering to the Veterinary Co-operative Oncology Group Common Terminology Criteria for Adverse Events (VCGO-CTCAE).

Antitumor assessment of S-PAC-1 in dogs with lymphoma

Caliper measurement was performed according to the Response Evaluation Criteria in Solid Tumors (RECIST) method (15). Briefly, the longest linear length measurement was recorded for four pairs of peripheral lymph nodes (mandibular, prescapular, inguinal, and popliteal), with the summation of these values giving a RECIST score. In addition to caliper measurements for all four sets of peripheral lymph nodes, computed tomography (CT) scans were performed on the mandibular lymph nodes in every patient, allowing for accurate and objective measurement of maximal lymph node linear length.

Results

In vivo toxicity of PAC-1

In an effort to characterize the feasibility and tolerability of i.v. administered PAC-1, toxicity testing of PAC-1 (when administered in HPβCD via tail vein injection) was carried out with C57/BL6 mice and is summarized in Supplementary Table S1. Mice that received PAC-1 exhibited transient neurotoxicity with onset occurring within 5 minutes of drug administration and resolution occurring within 2 hours. Mice that received only the HPβCD vehicle did not exhibit any clinically observable toxicity. The observed neurotoxicity of PAC-1 in mice did not seem to be species specific, as grand mal seizure activity in one healthy dog was elicited when administered 25 mg/kg of PAC-1 as a 5-minute i.v.
infusion. Adverse side effects in this dog were transient and not life limiting.

Given the known affinity of PAC-1 for zinc in vitro (9), and the data suggesting that PAC-1 binds cellular zinc (10), we hypothesized that the neurotoxicity observed in mice and dogs administered PAC-1 in HPβCD was caused by the chelation of intracellular zinc at N-methyl-D-aspartic acid (NMDA) receptors within the central nervous system (CNS). This hypothesis is consistent with data from in vivo studies of other zinc chelators that induce a neurologic phenotype reminiscent of what we observed with PAC-1 (16, 17). Indeed, in silico analysis of PAC-1 to predict the partitioning across the blood-brain barrier (BBB; ref. 18) shows that PAC-1 has a calculated logBB of -0.07. This logBB would correlate to a partitioning ratio of 1.0:0.85 between the blood and the brain, suggesting that a significant amount of PAC-1 may be entering the CNS. Several studies have indicated that chelation of intracellular zinc stores relieves tonic suppression of NMDA receptors, resulting in neuronal hyperexcitation (17, 19).

Design of S-PAC-1

In an effort to overcome the undesirable side effect of neurotoxicity, we hypothesized that a derivative of PAC-1 that had a lower propensity to cross the BBB would exhibit decreased neurotoxicity and allow for dosing at higher concentrations. Based on the structure-activity relationship previously reported (10), it was predicted that a polar functional group installed on the benzyl ring of PAC-1 should decrease the predicted logBB while maintaining the activity of the parent compound. As such S-PAC-1 (Fig. 1A), a sulfonamide derivative of PAC-1, was designed as a compound predicted to have a markedly decreased ability to cross the BBB (logBB of -1.26, providing a predicted blood/brain ratio of 1.0:0.055). See Supplementary Data for the synthetic route to S-PAC-1.

S-PAC-1 binds zinc in vitro

The activity of S-PAC-1 was characterized in several biochemical assays analogous to previously performed PAC-1 studies (9, 10). An EGTA competition titration experiment (13) was used to determine the binding constant for the S-PAC-1–Zn$^{2+}$ complex. In the presence of EGTA, the changes in the fluorescence of the S-PAC-1–Zn$^{2+}$ complex were used to plot a formation curve (Fig. 1B). Using the known binding constant of EGTA, the free zinc concentration can be calculated and used to determine the binding constant of the
S-PAC-1–Zn2+ complex. This complex has a \(K_d \) of 46 ± 5 nmol/L compared with 52 ± 2 nmol/L for PAC-1–Zn2+ (10).

S-PAC-1 activates procaspase-3 in vitro

The ability of S-PAC-1 to activate recombinantly expressed procaspase-3 in the presence of exogenous zinc was assessed in vitro. To ensure that the enzymatic activity of the proenzyme was being monitored, a proteolytically uncleavable mutant of procaspase-3 was used in which the three aspartic acid cleavage site residues are mutated to alanine (D9A/D28A/D175A; refs. 9, 20). This uncleavable form of procaspase-3 is not capable of processing to the mature active caspase-3, thus ensuring that any increase in activity observed is due to an increase in the activity of the proenzyme rather than autoproteolysis of the proenzyme. As shown in Fig. 1C, S-PAC-1 rapidly (within 5 minutes) enhances the enzymatic activity of the proenzyme by relief of zinc-mediated inhibition, although to a lesser degree than PAC-1.

S-PAC-1 induces death in multiple cancer cell lines in culture

Having confirmed that S-PAC-1 chelates zinc and activates procaspase-3 in vitro, the antineoplastic activity of S-PAC-1 was assessed against a panel of human, canine, and murine cancer cell lines using the sulforhodamine B assay (21). The 72-hour IC\(_{50}\) values for PAC-1 and S-PAC-1 are reported in Table 1. Both PAC-1 and S-PAC-1 have micromolar cytotoxic IC\(_{50}\) values against all lymphoma cell lines tested regardless of the species of origin. U-937 cells treated with DMSO, 50 μmol/L PAC-1, or 50 μmol/L S-PAC-1 for 12 hours were assessed by Annexin V/propidium iodide (PI) staining and analyzed by flow cytometry (Fig. 1D). Both PAC-1 and S-PAC-1 treatment lead to a similar increase in the population of apoptotic cells (Annexin V positive, PI negative).

In an effort to determine an appropriate treatment strategy for the evaluation of S-PAC-1 in vivo, the time dependency of S-PAC-1 cytotoxicity was evaluated. U-937 cells were treated with S-PAC-1 for various lengths of time. After treatment with S-PAC-1, cells were washed to remove compound and cultured in growth medium without compound. Cell death was assessed at 72 hours for all treatment times. An IC\(_{50}\) value was determined for each exposure time and reported in Table 1. At times shorter than 6 hours, the IC\(_{50}\) value was greater than the highest concentration tested. Between 12 and 24 hours, the IC\(_{50}\) value rapidly decreased to a minimum and showed little variation over the course of the subsequent 48 hours. These time dependency experiments suggest that S-PAC-1 will be most effective in vivo if cancer cells are exposed to the compound for at least 24 hours.

S-PAC-1 has no detectable neurotoxic effect in mice

Having confirmed the activity of S-PAC-1 in vitro and in cell culture, the toxicity of S-PAC-1 (when administered in HPβCD via tail vein injection) was assessed in C57/BL6 mice and is summarized in Supplementary Table S1. S-PAC-1 exhibited no observable toxicity at any dose tested. Given the dramatically reduced neurotoxic effect of S-PAC-1, pharmacokinetic analysis was performed to compare the plasma concentrations achievable with PAC-1 and S-PAC-1. Mice were treated with 20 mg/kg PAC-1 (the dose at which significant neurologic symptoms first appear), 50 mg/kg PAC-1 (the dose where acute neurologic symptoms are present), and 20 mg/kg S-PAC-1.

Table 1. Assessment of PAC-1 and S-PAC-1 cytotoxicity in cancer cell lines

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Species</th>
<th>Origin</th>
<th>Exposure time (h)</th>
<th>S-PAC-1 72-h IC(_{50}) (μmol/L)</th>
<th>PAC-1 72-h IC(_{50}) (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-937</td>
<td>Human</td>
<td>Lymphoma</td>
<td>1</td>
<td>>100</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>>100</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>>100</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>20 ± 12</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>9.7 ± 1.1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>5.9 ± 1.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>5.6 ± 0.8</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>6.4 ± 0.8</td>
<td>9.3 ± 0.5</td>
</tr>
<tr>
<td>EL4</td>
<td>Mouse</td>
<td>Lymphoma</td>
<td>72</td>
<td>7.1 ± 1.3</td>
<td>3.8 ± 0.9</td>
</tr>
<tr>
<td>17-71*</td>
<td>Dog</td>
<td>Lymphoma</td>
<td>72</td>
<td>2.7 ± 0.8</td>
<td>2.5 ± 0.9</td>
</tr>
<tr>
<td>GL-1</td>
<td>Dog</td>
<td>Lymphoma</td>
<td>72</td>
<td>7.1 ± 0.3</td>
<td>4.9 ± 0.3</td>
</tr>
<tr>
<td>OSW</td>
<td>Dog</td>
<td>Lymphoma</td>
<td>72</td>
<td>11.0 ± 0.9</td>
<td>8.6 ± 1.3</td>
</tr>
<tr>
<td>Jurkat</td>
<td>Human</td>
<td>Leukemia</td>
<td>72</td>
<td>4.5 ± 1.1</td>
<td>5.7 ± 2.8</td>
</tr>
<tr>
<td>SK-MEL-5</td>
<td>Human</td>
<td>Melanoma</td>
<td>72</td>
<td>8.6 ± 1.3</td>
<td>11.5 ± 3.6</td>
</tr>
<tr>
<td>HeLa</td>
<td>Human</td>
<td>Cervical</td>
<td>72</td>
<td>28.4 ± 7.7</td>
<td>15.5 ± 3.8</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>Human</td>
<td>Breast</td>
<td>72</td>
<td>11.7 ± 5.3</td>
<td>9.9 ± 1.0</td>
</tr>
</tbody>
</table>

NOTE: Error is SEM (\(n = 3 \)). Cells were exposed to compound for the time indicated, compound was washed out, and cell viability/biomass assessment was made after 72 h.

*This cell line was assessed using the MTS cell viability assay. All other cell lines were assessed with the sulforhodamine B assay.
and 350 mg/kg S-PAC-1 (the highest dose tested) via tail vein injection. Serum was analyzed by high-performance liquid chromatography (HPLC) to provide the pharmacokinetic profiles for S-PAC-1 and PAC-1 (Fig. 2A). At the PAC-1 dosage that induced mild neurotoxicity (20 mg/kg), peak plasma concentrations were ∼50 μmol/L. In contrast, a 350 mg/kg dose of S-PAC-1 provided peak plasma levels of ∼3,500 μmol/L without any signs of neurotoxicity.

S-PAC-1 has a short half-life in mice

S-PAC-1 (125 mg/kg) was administered to mice via i.p. injection and found to have a short half-life (∼1 hour, Fig. 2B); it was predicted that the mice would need to be treated with a 350 mg/kg dose of S-PAC-1 every 2 hours to achieve and maintain a minimum plasma concentration of 10 μmol/L over a course of 24 hours. Although this frequent dosing regimen for S-PAC-1 (i.p. every 2 hours for 24 hours) was technically feasible, further evaluation of S-PAC-1 as a novel therapeutic agent using murine tumor models was not methodologically practical. As such, we sought to further investigate S-PAC-1 in a larger mammalian experimental system, specifically healthy and spontaneous cancer-bearing dogs, which conferred greater practicality for the maintenance of S-PAC-1 steady-state concentrations for prolonged periods of time.

Assessment of S-PAC-1 in research dogs

Healthy research hound dogs were used for pharmacokinetic and toxicity investigations of S-PAC-1. First, four research hound dogs were treated with 25 mg/kg S-PAC-1 (solubilized in HPβCD) via i.v. injection over 10 minutes. In addition to pharmacokinetic analysis, the hematologic and nonhematologic tolerability of single-dose, i.v. S-PAC-1 administration was monitored in research dogs weekly for 4 consecutive weeks (Supplementary Table S2A). As shown in Fig. 2C, the peak plasma concentration resulting from this 25 mg/kg i.v. bolus dose was ∼150 μmol/L. From analysis of the pharmacokinetic profile, the half-life of S-PAC-1 in dogs...
was calculated to be 1.09 ± 0.02 hours (Table 2). Additionally, single-dose, i.v. S-PAC-1 treatment was well tolerated by all four research dogs, and no short- or long-term adverse events were observed with these animals as a result of treatment.

Based on the half-life of 1.09 ± 0.02 hours in dogs, continuous-rate infusion was explored in an attempt to maintain a steady-state serum concentration of S-PAC-1 during the course of the treatment. Three healthy research dogs were used to determine if S-PAC-1 could be safely administered via a continuous-rate infusion regimen, and to determine appropriate dosing levels to maintain plasma concentrations above ∼10 μmol/L. Each dog received a different dose of S-PAC-1 (Fig. 2D) with an initial loading dose via i.v. infusion over the course of 10 minutes followed by a maintenance dose delivered by an infusion pump for an additional 24 hours. Each dog was observed throughout the course of the 24-hour infusions for adverse reactions, and blood was drawn at intervals to assess the pharmacokinetic profile of S-PAC-1 treatment. In addition, following completion of S-PAC-1 infusion, research dogs were evaluated for hematologic and nonhematologic toxicity weekly for 4 consecutive weeks. During this period, no dogs exhibited hematologic parameters outside of reference ranges (Supplementary Table S2B), and no adverse events were reported by animal care staff.

S-PAC-1 administered as a 24-hour continuous-rate infusion can be safely given to research dogs and easily reaches micromolar steady-state plasma concentrations that correlate with dose escalation (Fig. 2D). Based on these results, it was predicted that a 7 mg/kg loading dose and 3 mg/kg/h constant-rate infusion would be sufficient to achieve a steady-state plasma concentration of ∼10 μmol/L.

Assessment of S-PAC-1 in dogs with lymphoma

Having confirmed the in vitro activity of S-PAC-1 and having shown that the compound can be safely administered via continuous-rate infusion and that steady-state plasma concentrations of S-PAC-1 of >10 μmol/L may be achieved for a 24-hour duration, a small (n = 6) clinical trial of client-owned pet dogs with spontaneous lymphoma was conducted. The aim of this trial was to show the feasibility of dosing S-PAC-1 in dogs with lymphoma and to determine if therapeutic serum levels of compound could be achieved via this dosing regimen. Pet dogs presented or referred to the Small Animal Clinic at the University of Illinois at Urbana-Champaign (UIUC) College of Veterinary Medicine were

Table 2. Noncompartmental pharmacokinetic analysis of S-PAC-1 (25 mg/kg) in four healthy research dogs

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Hound A</th>
<th>Hound B</th>
<th>Hound C</th>
<th>Hound D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (kg)</td>
<td>33.2</td>
<td>34.1</td>
<td>34.2</td>
<td>32.5</td>
</tr>
<tr>
<td>Lambda_z half-life (h)</td>
<td>1.05</td>
<td>1.11</td>
<td>1.11</td>
<td>1.09</td>
</tr>
<tr>
<td>T_\text{max} (h)</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>C_{\text{max}} (μg/mL)</td>
<td>69.86</td>
<td>63.71</td>
<td>80.07</td>
<td>69.83</td>
</tr>
<tr>
<td>AUC_{\text{O-irf}} (h·μg/mL)</td>
<td>73.56</td>
<td>74.60</td>
<td>82.19</td>
<td>78.81</td>
</tr>
<tr>
<td>AUMC_{\text{O-irf}} (h·h·μg/mL)</td>
<td>93.63</td>
<td>104.77</td>
<td>90.48</td>
<td>101.78</td>
</tr>
<tr>
<td>Cl_s (mL/h/kg)</td>
<td>340</td>
<td>335</td>
<td>304</td>
<td>317</td>
</tr>
<tr>
<td>V_{\text{ss}} (mL/kg)</td>
<td>432.5</td>
<td>470.8</td>
<td>334.8</td>
<td>410</td>
</tr>
<tr>
<td>MRT (h)</td>
<td>1.27</td>
<td>1.40</td>
<td>1.10</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Abbreviations: AUC, area under the curve; Cl_s, systemic clearance; V_{\text{ss}}, volume of distribution at steady state; MRT, mean residence time.

Table 3. Characteristics of the six pet dogs with lymphoma treated with S-PAC-1

<table>
<thead>
<tr>
<th>Patient</th>
<th>Breed</th>
<th>Male/female</th>
<th>Age</th>
<th>Weight (lb)</th>
<th>Immunophenotype</th>
<th>Prior therapy</th>
<th>Treatment (h)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mixed breed</td>
<td>Castrated male</td>
<td>7</td>
<td>79</td>
<td>B-cell lymphoma</td>
<td>CHOP</td>
<td>24</td>
<td>PR</td>
</tr>
<tr>
<td>2</td>
<td>Labrador Retriever</td>
<td>Spayed female</td>
<td>7</td>
<td>89</td>
<td>T-cell lymphoma</td>
<td>Naive</td>
<td>24</td>
<td>SD</td>
</tr>
<tr>
<td>3</td>
<td>Newfoundland</td>
<td>Intact male</td>
<td>4</td>
<td>160</td>
<td>T-cell lymphoma</td>
<td>Naive</td>
<td>24</td>
<td>SD</td>
</tr>
<tr>
<td>4</td>
<td>Welch Corgi</td>
<td>Spayed female</td>
<td>8</td>
<td>30</td>
<td>B-cell lymphoma</td>
<td>Naive</td>
<td>72</td>
<td>SD</td>
</tr>
<tr>
<td>5</td>
<td>Golden Retriever</td>
<td>Spayed female</td>
<td>7</td>
<td>80</td>
<td>B-cell lymphoma</td>
<td>Naive</td>
<td>72</td>
<td>PD</td>
</tr>
<tr>
<td>6</td>
<td>MC Boxer</td>
<td>Castrated male</td>
<td>6</td>
<td>59</td>
<td>T-cell lymphoma</td>
<td>Naive</td>
<td>72</td>
<td>PD</td>
</tr>
</tbody>
</table>

Abbreviations: PD, progressive disease; PR, partial response; SD, stable disease.
considered for enrollment in the clinical trial (see Supplementary Data for inclusion criteria). Dogs that entered the study received treatment with S-PAC-1 as a single entity drug for 4 weeks and were followed for an additional 2 weeks after drug withdrawal.

Toxicity and pharmacokinetics of S-PAC-1 in canine lymphoma patients

Six patient dogs received treatment with S-PAC-1 via one of two treatment regimens (summarized in Table 3). Patients enrolled in the first treatment regimen \((n = 3) \) received a once-a-week 24-hour continuous infusion of S-PAC-1 for four weekly cycles. Patients enrolled in the second treatment regimen \((n = 3) \) received a 72-hour continuous infusion of S-PAC-1 every other week for two treatment cycles. Blood was collected during each S-PAC-1 treatment cycle for pharmacokinetic analysis. In addition, blood was collected from all pet dogs at each scheduled follow-up visit to characterize hematologic and nonhematologic toxicity. Between administrations, patients were monitored by pet owners for gastrointestinal toxicity observational scores adhering the VCOG-CTCAE (22). All patients enrolled in either treatment regimen did not show any clinically significant hematologic or nonhematologic toxicity (Supplementary Table S2C and D). Only minor adverse events were reported by pet owners, such as self-limiting and localized irritation at the infusion site \((n = 4) \), transient loss of appetite \((n = 1) \), and mild diarrhea \((n = 3) \). All adverse reactions subsided within 48 hours of the end of each treatment cycle. Serum analysis indicated that all patients had measurable serum concentrations of S-PAC-1, as shown in Fig. 3. In accordance with our prediction from the healthy research dogs, an infusion with a loading dose of 7 mg/kg and a constant-rate infusion of 3 mg/kg/h was sufficient to achieve steady-state plasma concentrations of >10 μmol/L in the majority of treatments.

Antitumor activity of S-PAC-1

Given the small number of patients included in this clinical study, antitumor activity of S-PAC-1 cannot be conclusively determined. However, of the six patients treated, one patient (patient 1) showed a partial response with a ~30% reduction in both caliper RECIST score and the mandibular lymph node measurements by CT scan over the course of the 4-week treatment (Fig. 4A and B). During treatment, this dog received a 24-hour continuous i.v. infusion of S-PAC-1 once a week.
week (total of four treatments). Following the four treatment
cycles, drug administration was withdrawn and the dog was
monitored by RECIST for 2 subsequent weeks. After discon-
tinuation of S-PAC-1 treatment, the RECIST scores for this
dog increased dramatically (days 36 and 42). In addition to
this partial response, three patients showed stable disease
(patients 2–4), whereas two patients showed disease progres-
sion (patients 5 and 6), as indicated in Table 3. The rapid
increase in RECIST scores after drug withdrawal shown in
patient 1 is representative of the effect of drug withdrawal
in all patients.

Analysis of lymph node aspirates from two dogs (patients
1 and 2) shows the presence of the procaspase-3 drug target
before treatment as well as an increase in cleaved caspase-3
after treatment with S-PAC-1 (Supplementary Fig. S1). Lymph
node aspirates collected from these dogs with lym-
phoma consisted of >90% malignant lymphocytes based
on cytologic evaluation. Based on the predominance of malig-
nant lymphocytes, the observed shift in cleaved caspase-3 af-
ter S-PAC-1 treatment (Supplementary Fig. S1) most likely
represents the induction of apoptosis in malignant lympho-
cyes; however, a small percentage of this shift may be due to
nonmalignant lymphocytes and stromal cells.

Discussion

S-PAC-1 is the first compound in the PAC-1 class (and the
first small-molecule activator of procaspase-3) to be evalu-
ated in a clinical trial of cancer patients. As such, the evalua-
tion of S-PAC-1 in a clinical setting is a proof of concept for
the strategy of direct procaspase-3 activation as an anticancer
therapy. Compounds in the PAC-1 class activate procas-
pase-3 via chelation of inhibitory zinc ions (10). Intracellular
zinc is found principally in tightly bound complexes in me-
talloproteinasises, zinc finger domains, and other metal bind-
ing proteins; however, ~10% of cellular zinc is believed to
exist in a loosely bound, labile pool (23). Several studies im-
plicate labile zinc as an endogenous antiapoptotic regulator
(24–26), and chelation of the loosely bound pool of zinc is an
emerging anticancer strategy (9, 10, 27). Thus, the evaluation
of S-PAC-1 is also a proof of concept for the chelation of the
labile zinc pool as an anticancer therapy.

It is perhaps not surprising that high doses of PAC-1 in-
duce neurotoxicity, given its zinc chelation properties and
predicted BBB permeability. Zinc homeostasis is important
in the CNS (28), and NMDA receptors require bound zinc
to provide a tonic inhibition (17). NMDA receptors bind to
zinc with a low affinity (Kd = 5.5 μmol/L; ref. 29), which sug-
gests that a zinc chelator with a higher affinity for zinc such
as PAC-1 (Kd = 52 nmol/L) would be able to successfully se-
quester zinc from these receptors. Several studies indicate
that intracellular zinc chelation results in hyperexcitation
of these receptors (16), resulting in symptoms such as uncon-
trolled muscle movement and seizure (17, 30). One strategy
for reducing the permeability of a compound through the
BBB is to increase the polarity of the molecule (18). Addition
of the sulfonamide functional group is a good candidate for
such polarity increase, as the aryl sulfonamide motif is com-
mon in several small-molecule therapeutics. The dramatically
different neurotoxic effects of S-PAC-1 and PAC-1 suggest
that S-PAC-1 is considerably less BBB permeable and may be
the more attractive drug candidate.

Spontaneously arising cancers in pet dogs share many simi-
larities with human cancers, including histologic appear-
ance, tumor genetics, molecular targets, biological and
clinical behavior, and response to therapy (31). Of these
spontaneous canine cancers, multicentric lymphoma is the
most common, occurring in 13 to 24 of every 100,000 dogs
(32). The clinical progression and treatment of multicentric
B- or T-cell canine lymphoma has many of the same charac-
teristics of non–Hodgkin lymphoma in humans. Canine lym-
phoma and human non–Hodgkin lymphoma both respond
clinically to the same cytotoxic drugs such as doxorubicin,
vincristine, and cyclophosphamide. These drugs are compo-
nents of the CHOP treatment protocol, first-line therapy
for diffuse large B-cell lymphoma in humans (33). When
administered to dogs, CHOP will induce complete clinical

Figure 4. Activity of S-PAC-1 in patient 1. A, RECIST scores for patient 1
over the course of 7 wk. Arrows indicate days during which patient
received S-PAC-1 as a 24-h continuous i.v. infusion (as detailed in text
and Fig. 3A). After drug withdrawal, tumor size increased rapidly (days
28–42). B, CT scans of the mandibular lymph nodes of patient 1 (outlined
in yellow) show a clinically measurable decrease in tumor size 1 wk
after S-PAC-1 administration.
remission in ~90% of dogs diagnosed with lymphoma (34, 35). Similar to the human response, the majority of dogs who achieve remission with CHOP therapy will experience disease relapse (36). Given the commonalities between human and canine lymphoma, evaluation of S-PAC-1 in a canine lymphoma clinical trial may provide important translational information for the development of S-PAC-1 as a novel human therapeutic.

Although inconclusive in this study design, it is highly encouraging that four of six patients achieved partial response or stable disease for 4 weeks in duration, as canine lymphoma is generally a rapidly progressive malignancy with dramatic enlargement of peripheral lymph nodes within weeks of disease diagnosis. As shown in Table 3, one dog enrolled in the current study (patient 1) was in remission for 5 months after CHOP therapy and was recently diagnosed with recurrent lymphoma. On enrollment in the study, this dog showed a ~30% reduction in tumor size in response to S-PAC-1 treatment. This partial response is significant given the comparatively short treatment duration (4 weeks for S-PAC-1 versus 19 weeks for CHOP), and that the dose of S-PAC-1 administered does not seem to be near the maximum tolerated dose.

In conclusion, we have discovered S-PAC-1 as a procaspase-activating compound that can be safely administered in vivo, and have identified pet dogs with lymphoma as a tractable model for the assessment of small-molecule procaspase-3 activation as an anticancer strategy. The use of this large animal model allows drug administration via continuous-rate i.v. infusion, something necessary with S-PAC-1 (due to its short half-life in vivo) and not practical in murine tumor models. S-PAC-1 induces apoptotic death in cultured cancer cells, with similar activity to the parent compound PAC-1. Whereas high doses of PAC-1 (when administered in HP3CD) induce neurotoxicity in vivo, S-PAC-1 does not cause this effect at serum concentration ~70-fold higher. S-PAC-1 can be safely administered to mice, research dogs, and dogs with lymphoma and shows encouraging clinical effect in this preliminary evaluation. Given the absence of neurotoxicity with S-PAC-1 and the large safety window observed in mice, it is anticipated that S-PAC-1 will prove to be safe at escalated doses, and thus, its further evaluation in cancer patients is warranted.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank BioLine Rx for initial assistance with PAC-1 formulations.

Grant Support

NIH grant R01-CA120439 and UIUC. Q.P. Peterson was supported by NIH Chemistry-Biology Interface Training Grant NBRS 1-T32-GM070421 and by a predoctoral fellowship from the Medicinal Chemistry Division of the American Chemical Society. D.C. West was partially supported by National Research Service Award grant F31-CA130338-01S1.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 03/19/2010; revised 07/14/2010; accepted 07/19/2010; published OnlineFirst 09/07/2010.

References

20. Bose K, Pop C, Feeney B, Clark AC. An uncleavable procas-
pase-3 mutant has a lower catalytic efficiency but an active site
similar to that of mature caspase-3. Biochemistry 2003;42:
12298–310.
21. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cyto-
22. Veterinary Co-operative Oncology Group—Common Terminology
Criteria for Adverse Events (VCOG-CTCAE) following chemotherapy
or biological antineoplastic therapy in dogs and cats v1.0. Vet Comp
23. Franklin RB, Milton B, Feng P, Costello LC. Zinc and zinc transporters
in normal prostate and the pathogenesis of prostate cancer. Front
Zinc ions prevent processing of caspase-3 during apoptosis in-
duced by geranylgeraniol in HL-60 cells. J Biochem (Tokyo)
25. Chai F, Truong-Tran AQ, Ho LH, Zalewski PD. Regulation of caspase
activation and apoptosis by cellular zinc fluxes and zinc deprivation:
zinc in programmed cell death: temporal relationship between zinc
depletion, activation of caspases, and cleavage of Sp family trans-
potent anticancer activity inhibits cell growth by modulating intracel-
28. Frederickson CJ, Koh J-Y, Bush Al. The neurobiology of zinc in
29. Karakas E, Simorowski N, Furukawa H. Structure of the zinc-bound
amino-terminal domain of the NMDA receptor NR2B subunit. EMBO
30. Adler M, Dintelman RE, Wannemacher RW. Protection by the heavy
metal chelator N,N,N,N ‐tetrakis (2‐pyridylmethyl)ethylenediamine
(TPEN) against the lethal action of botulinum neurotoxin A and B.
Toxicon 1997;35:1089–100.
31. Breen M, Modiano JF. Evolutionarily conserved cytogenetic changes
in hematological malignancies of dogs and humans—man and his
best friend share more than companionship. Chromosome Res
32. Dorn CR, Taylor DO, Schneider R. The epidemiology of canine leu-
33. Kahl B. Chemotherapy combinations with monoclonal antibodies in
34. Garrett LD, Thamm DH, Chun R, Dudley R, Vail DM. Evaluation of a
6-month chemotherapy protocol with no maintenance therapy for
35. Chun R, Garrett LD, Vail DM. Evaluation of a high-dose chemother-
apy protocol with no maintenance therapy for dogs with lymphoma.
36. Rassnick KM, Mauldin GE, Al‐Sarraf R, Mauldin GN, Moore AS,
Mooney SC. MOPP chemotherapy for treatment of resistant lympho-