
Lattice Microbes Problem Solving
Environment User’s Guide

LM Version 2.3, pyLM Version 1.1
June 1, 2016

Joseph R. Peterson, Mike J. Hallock, Elijah Roberts, John A. Cole, Piyush
Labhsetwar, John E. Stone, and Zaida Luthey-Schulten

University of Illinois at Urbana-Champaign
http://www.scs.illinois.edu/schulten/lm

Description

The Lattice Microbes User’s Guide describes the capabilities, license and installation of the soft-
ware. Lattice Microbes development is supported in part by the DOE (Office of Science BER)
under grant DE-FG02-10ER6510, the NIH (Center for Macromolecular Modeling and Bioinfor-
matics) under grant NIH-RR005969, and the NSF under grant MCB-08226143.

Table of Contents

List of Figures . iii

List of Tables . iii

Chapter 1 Introduction . 1
1.1 Lattice Microbes . 1
1.2 pyLM . 1

Chapter 2 Capabilities . 4
2.1 Stochastic Simulations . 4

2.1.1 Well-Stirred Simulations . 4
2.1.2 Spatially-Resolved Simulations . 6

2.2 Problem Solving Environment . 7

Chapter 3 Installation . 8
3.1 System requirements . 8
3.2 Software Requirements . 8
3.3 Installing a precompiled binary . 10
3.4 Installing from source code . 11

3.4.1 Satisfying external dependencies . 11
3.4.2 Unpack the source distribution . 13
3.4.3 Configuring the build for your local environment 13
3.4.4 Build and install the software . 16

3.5 pyLM Installation . 16
3.5.1 External Libraries . 16
3.5.2 Testing . 18

3.6 In case of difficulty . 18

Chapter 4 Examples Simulation Specifications . 21

Chapter 5 License and Copyright . 23

Bibliography . 24

ii

List of Figures

1.1 Comparison (lower is better) of simulation time to completion with Lattice Mi-
crobes to other grid-based stochastic software for a simulation of spatially resolved
reversible bimolecular reaction with 100K particles at different system volumes.
Data for other simulation codes from the paper: [4]. Key: LM - “Lattice Microbes
Multi-particle diffusion RDME”, GMP - “Gillespie Multi-Particle”, GPGMP -
“GPU Gillespie Multi-Particle”, MesoRD - “MesoRD”, SSC - “Stochastic Sim-
ulation Compiler”. 2

1.2 A schematic of the pyLM and the Lattice Microbes software. 2
1.3 The workflow of the pyLM PSE. 3

3.1 Average (top) and Variance (bottom) of the three species over 50 replicates for the
reversible bimolecular reaction. 19

3.2 The same figure as before, except with fits to the rates performed in Python. 19
3.3 The graph of the simple bimolecular reaction. Nodes in cyan are reacting species

and red are reactions. Direction of the arrows indicate flow of reactants. 20

List of Tables

2.1 Reactions available to both CME and RDME. Here, the stochastic rate constant
should be computed from the macroscopic rate constant (perhaps from experiment)
using the volume of the experiment, V , and Avogadro’s number, NA. *Note that
for a 2nd order self reaction, the rate of A disappearing is 2k. †Michaelis-Menten
type reactions are currently only supported in CME simulations, and only compute
the propensity of forming the product using the steady-state assumption. 5

2.2 CME sampling algorithms available in Lattice Microbes. CPU and GPU columns
indicate whether the algorithm is available (Y) or unavailable (N) for the particular
compute device. The Solver Keyword column indicates the string to pass to the
“lm” executable to perform that simulation. 6

2.3 RDME sampling algorithms available in Lattice Microbes. CPU and GPU columns
indicate whether the algorithm is available (Y) or unavailable (N) for the particular
compute device. The Solver Keyword column indicates the string to pass to the
“lm” executable to perform that simulation. 6

iii

Chapter 1

Introduction

This User’s Guide contains a description of the software, its capabilities and instructions for in-
stalling Lattice Microbes, the software described in the following publications: [1–3]. This guide
is very much a work in progress and will continue to be expanded. At present, it should contain
enough information to get you started using the Lattice Microbes software.

1.1 Lattice Microbes

Studying cellular processes, which show inherently noisy non-deterministic behavior, with single
molecule resolution on timescales of biological relevance such as the lifetime of a cell, requires
considerable computational effort. Lattice Microbes [1,2] is software developed to sample realiza-
tions of the spatially homogenous and heterogeneous stochastic Master equations, with thousands
of reactions among hundreds of molecular species. The software uses graphics processing units
(GPUs) to exploit the natural parallelism afforded by the Master equations to access timescales
orders-of-magnitude larger than other particle– and grid–based software for sampling stochastic
cellular processes as seen in Figure 1.1. While Lattice Microbes was originally designed for sim-
ulating single E. coli cells on one GPU, the desire to simulate cellular consortia and larger species
like yeast, drove the development of a new version of Lattice Microbes that utilizes multiple GPUs
to share the work [3]. In addition to larger simulations, multiple GPUs allow small simulations to
be completed more quickly.

1.2 pyLM

pyLM is a Problem Solving Environment (PSE) for biological simulations [5]. Written in Python,
it wraps and extends Lattice Microbes. The PSE is comprised of a base set of functionality to
set up, monitor and modify simulations, as well as a set of standard post–processing routines that
interface to other Python packages, including NumPy, SciPy, H5py, and iGraph to name a few.

The PSE is shown schematically in Figure 1.2. It sits on top of a SWIG interface that allows the
C++ code to be accessible from the Python terminal. Using pyLM allows the user to set up, run
and post–process simulations all within a single script. A general workflow for using LM is shown
in Figure 1.3. For tutorials on using pyLM please see the “Instruction Guide” and for in–depth

1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06 1e+07 1e+08

Si
m

ul
at

io
n

tim
e

(s
)

Subvolumes

Reaction/Diffusion Benchmark

LM
GMP

GPGMP
MesoRD

SSC

Figure 1.1: Comparison (lower is better) of simulation time to completion with Lattice Microbes to other
grid-based stochastic software for a simulation of spatially resolved reversible bimolecular reaction with
100K particles at different system volumes. Data for other simulation codes from the paper: [4]. Key: LM
- “Lattice Microbes Multi-particle diffusion RDME”, GMP - “Gillespie Multi-Particle”, GPGMP - “GPU
Gillespie Multi-Particle”, MesoRD - “MesoRD”, SSC - “Stochastic Simulation Compiler”.

pySTDLM

pyLM

SWIG Interface

Lattice Microbes

SBML/CMD Line

Low
er-Level

Figure 1.2: A schematic of the pyLM and the Lattice Microbes software.

description of all pyLM functionality please see the documentation “Reference Guide” available
on the website.

2

De�ne Simulation
Instances

De�ne Species/
Add Reactions

If RDME
Simulation

De�ne
Regions

If RDME
Simulation

De�ne
Geometry/

Pack Obstacles

Discretize to
Lattice

Customize
Simulation

If
Custom
Events

De�ne Solver
and

hookSimulation()

Run System

Post Process
Data

Yes

Yes

Yes

No

No

No

Figure 1.3: The workflow of the pyLM PSE.

3

Chapter 2

Capabilities

2.1 Stochastic Simulations

Lattice Microbes can be used to simulate chemical master equations (CME):

dP (x, t)

dt
=

R∑
r

[−ar(x)P (x, t) + ar(xν − Sr)P (x− Sr, t)]

and reaction-diffusion master equations (RDME):

dP (x, t)

dt
=

V∑
ν

R∑
r

[−ar(xν)P (xν , t) + ar(xν − Sr)P (xν − Sr, t)]

+
V∑
ν

±î,ĵ,k̂∑
ξ

N∑
α

[−dαxανP (x, t) + dα(xαν+ξ + 1)P (x+ 1αν+ξ − 1αν , t)]

using a variety of methods. Both CME and RDME support a number of different reaction types
including zeroth, first, second, and second order self reaction. These reactions are of the form in
Table 2.1. All rate constants input to Lattice Microbes should be the stochastic rate constant that
has been scaled by the volume and Avogadro’s number so that it is in units of sec-1. Use the table
for the correct conversion factor.
In addition, the pyLM problem solving environment provides tools to setup, run and post-process
stochastic simulations as well as integrate the stochastic techniques with other simulation method-
ologies (for example, see: [6]). The capabilities are outlined here.

2.1.1 Well-Stirred Simulations
CME simulations require species, reactions along with their rate constants, and initial specie counts
to be specified.

A number of algorithms for sampling the CME are available with CPU and GPU implementations.
The Gillespie stochastic simulation algorithm (SSA) [7] is the slowest but most straightforward.
The next-reaction (NR) and fluctuating next-reaction (FNR) [8] algorithms are also available and

4

O
rd

er
Fo

rm
Pa

ra
m

et
er

s
M

ac
ro

sc
op

ic
U

ni
ts

St
oc

ha
st

ic
R

at
e

C
on

st
an

t(
s−

1
)

0t
h

∅
→

A
k

M
s−

1
k
·V
·N

A

1s
t

A
→

B
k

s−
1

k

2n
d

A
+

B
→

C
k

M
−
1
s−

1
k

V
·N

A

2n
d

(S
el

f)
*

2A
→

B
k

M
−
1
s−

1
k

V
·N

A

M
ic

ha
el

is
-M

en
te

n†
E
+

S
→

E
+

P
k
ca
t,
K
M

s−
1
,M

k
c
a
t

V
·N

A
,K

M
V
·N

A

C
om

pe
tit

iv
e

M
ic

ha
el

is
-M

en
te

n†
E
+

I+
S
→

E
+

I+
P

k
ca
t,
K
M

,K
I

s−
1
,M

,M
k
c
a
t

V
·N

A
,K

M
V
·N

A
,K

I
V
·N

A

U
nc

om
pe

tit
iv

e
M

ic
ha

el
is

-M
en

te
n†

E
+

I+
S
→

E
+

I+
P

k
ca
t,
K
M

,K
I

s−
1
,M

,M
k
c
a
t

V
·N

A
,K

M
V
·N

A
,K

I
V
·N

A

N
on

co
m

pe
tit

iv
e

M
ic

ha
el

is
-M

en
te

n†
E
+

I+
S
→

E
+

I+
P

k
ca
t,
K
M

,K
I

s−
1
,M

,M
k
c
a
t

V
N

A
,K

M
V
·N

A
,K

I
V
·N

A

Ta
bl

e
2.

1:
R

ea
ct

io
ns

av
ai

la
bl

e
to

bo
th

C
M

E
an

d
R

D
M

E
.H

er
e,

th
e

st
oc

ha
st

ic
ra

te
co

ns
ta

nt
sh

ou
ld

be
co

m
pu

te
d

fr
om

th
e

m
ac

ro
sc

op
ic

ra
te

co
ns

ta
nt

(p
er

ha
ps

fr
om

ex
pe

ri
m

en
t)

us
in

g
th

e
vo

lu
m

e
of

th
e

ex
pe

ri
m

en
t,
V

,a
nd

A
vo

ga
dr

o’
s

nu
m

be
r,
N
A

.* N
ot

e
th

at
fo

ra
2n

d
or

de
rs

el
fr

ea
ct

io
n,

th
e

ra
te

of
A

di
sa

pp
ea

ri
ng

is
2k

.†
M

ic
ha

el
is

-M
en

te
n

ty
pe

re
ac

tio
ns

ar
e

cu
rr

en
tly

on
ly

su
pp

or
te

d
in

C
M

E
si

m
ul

at
io

ns
,a

nd
on

ly
co

m
pu

te
th

e
pr

op
en

si
ty

of
fo

rm
in

g
th

e
pr

od
uc

tu
si

ng
th

e
st

ea
dy

-s
ta

te
as

su
m

pt
io

n.

5

(may, depending on the count of particles) considerably speed up the simulation using variable
time-stepping. These techniques along with their capabilities can be found in Table 2.3.

Method CPU GPU Solver Keyword
SSA Y Y lm::cme::GillespieDSolver
NR Y Y lm::cme::NextReactionSolver

FNR Y Y lm::cme::FluctuatingNRSolver

Table 2.2: CME sampling algorithms available in Lattice Microbes. CPU and GPU columns indicate
whether the algorithm is available (Y) or unavailable (N) for the particular compute device. The Solver
Keyword column indicates the string to pass to the “lm” executable to perform that simulation.

2.1.2 Spatially-Resolved Simulations
In addition to species, reactions along with their rate constants, and initial specie counts, RDME
also requires the lattice spacing, spatial organization of objects (membrane, cytoplasm, etc.) and
diffusion rates in and between these spatial objects to be specified.

Two methods for solving the RDME are available in Lattice Microbes. The first is the next subvol-
ume (NS) method [9], which is analogous to the next reaction method, of the CME. The other is a
constant timestep method called Multiparticle diffusion (MPD) developed to take advantage of the
fine-grained parallelism afforded by the GPU [2]. In the latter case, the timestep is specified by the
diffusion time:

τ =
λ2

2 · n ·D
where λ is the lattice spacing, n is the dimensionality (conventionally 2 or 3) and D is the macro-
scopic diffusion constant. Both are GPU accelerated, while only one is available on the CPU as
indicated in Table 2.3.
Additionally, a version of the MPD algorithm is available for computers with multiple-GPUs
(called the MGPU-MPD solver) that can effectively and efficiently split the computation over the
GPUs [10].

Method CPU GPU Solver Keyword
NS Y Y lm::rdme::NextSubvolumeSolver

MPD N Y lm::rdme::MpdRdmeSolver
MGPU-MPD N Y lm::rdme::MGPUMpdRdmeSolver

Table 2.3: RDME sampling algorithms available in Lattice Microbes. CPU and GPU columns indicate
whether the algorithm is available (Y) or unavailable (N) for the particular compute device. The Solver
Keyword column indicates the string to pass to the “lm” executable to perform that simulation.

6

2.2 Problem Solving Environment

pyLM and the included library of standard systems pySTDLM provide a problem solving envi-
ronment for setting up, running and analyzing stochastic biological simulations [5]. It contains
functionality for specifying simulation setup including:

• Named species

• Initial counts and distributions

• Reactions and rates

• Spatial localization and definition

• Diffusion properties

• Obstacles

• Define custom simulation flow

In addition, there are a number of pre- and post-processing functionalities including (but not limited
to):

• Integration with Jupyter Notebook

• Handles to data in the popular Numpy array representation

• Plotting species averages/variances and individual time traces

• Plotting Kymographs of spatial species distributions

• Reaction network generation

• Dynamic reaction network representations

The standard library (pySTDLM) also includes a number of cell shapes, colony layout routines,
and previously published reaction systems. Finally, pyLM provides functionality for accessing the
underlying representation of the simulation data with time-based interrupts to allow users to modify
or analyze the state of the simulation on-the-fly. This last functionality allows there merger of
different methodologies together. For examples of how to use pyLM please refer to the “Instruction
Guide” and for full enumeration of functionality please see the “Reference Manual” both of which
are available online at http://www.scs.illinois.edu/schulten/lm.

7

http://www.scs.illinois.edu/schulten/lm

Chapter 3

Installation

This chapter outlines the system and software requirements, and describes both methods of in-
stalling Lattice Microbes. Installation of precompiled binaries is discussed in Section 3.3. Installa-
tion from source code is discussed in Section 3.4. Regardless of which of the two of these options
is taken, pyLM requires additional installation instructions that are described in Section 3.5.

3.1 System requirements

The Lattice Microbes software has been tested on Linux 2.6 and Mac OS X 10.8 and 10.9. Al-
though the software can be run entirely on a system’s CPU, Lattice Microbes was designed from
the ground up to take advantage of NVIDIA Fermi (compute 2.0) and later GPUs which allow for
orders-of-magnitude speedup over the CPU-only implementations.

3.2 Software Requirements

In order to take full advantage of the Lattice Microbes software, several external software packages
should be installed on your system. While these lists appear daunting, the majority of the software
have binary installers that simplify installation. The full enumeration of required packages:

• Lattice Microbes v2.2 — http://www.scs.illinois.edu/schulten/lm/
• CUDA v5.5+ — http://developer.nvidia.com/cuda-downloads/
• Python v2.7 — http://www.python.org/download/
• HDF v1.8.8+ — http://www.hdfgroup.org/HDF5/release/obtain5.html
• Protocol Buffers v2.4.1 — http://code.google.com/p/protobuf/downloads/
• SBML v5.9+ — http://sourceforge.net/projects/sbml/files/libsbml/
• h5py v2.2.1+ — http://code.google.com/p/h5py/downloads
• NumPy and SciPy — http://www.scipy.org/install.html
• iGraph 0.6.5+ — http://igraph.sourceforge.net/download.html
• pygexf v0.2.2+ — http://pythonhosted.org/pygexf/users.html
• lxml 3.2.4+ — https://pypi.python.org/pypi/lxml
• matplotlib v1.3.0+ — http://matplotlib.org/downloads.html

Additional (highly recommended) optional packages:

8

http://www.scs.illinois.edu/schulten/lm/
http://developer.nvidia.com/cuda-downloads/
http://www.python.org/download/
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://code.google.com/p/protobuf/downloads/
http://sourceforge.net/projects/sbml/files/libsbml/
http://code.google.com/p/h5py/downloads
http://www.scipy.org/install.html
http://igraph.sourceforge.net/download.html
http://pythonhosted.org/pygexf/users.html
https://pypi.python.org/pypi/lxml
http://matplotlib.org/downloads.html

• VMD v1.9+ — http://www.ks.uiuc.edu/Research/vmd/
• Gephi v0.8.2+ — https://gephi.org/
• Cytoscape v3.0+ — http://www.cytoscape.org
• An MPI Library:

– OpenMPI — http://www.open-mpi.org/software/ompi/v1.6/, or
– MPICH2 — http://www.mpich.org/downloads/, or
– MVAPICH2 — http://mvapich.cse.ohio-state.edu/download/

Requisite for GPU acceleration, users of NVIDIA Fermi or later GPUs should ensure that the
CUDA 5.5+ drivers and libraries are installed and up to date.

The popular molecular dynamics visualization and analysis software VMD can be used to view
and animate output trajectories. We believe that these capabilities are vital in understanding the
details of how microscopic phenomena give rise to cell–scale behavior. For viewing of networks of
interaction both statically and dynamically we recommend installing Gephi. Static networks can
also be viewed with the popular Cytoscape graph visualizer.

Python scripts are used to set up and analyze realistic models of crowded cellular environments.
Users should ensure that Python is available on their system. In addition, pyLM requires NumPy,
SciPy, matplotlib, iGraph, h5py, lxml and pygexf for proper functioning. Most, if not all of these,
are available as binaries, via a package manager (such as macports, apt, etc.) or via “pip”.

Some users may find it necessary to compile Lattice Microbes from source code if, for example,
they wish to create custom reaction rate equations for their simulations, or will be installing Lattice
Microbes on a compute cluster, or a pre–compiled binary is not available for their machine. The
HDF5 and Protocol Buffers libraries and their development packages are required dependencies
for source compilation. See section 3.4 for more details.

The Systems Biology Markup Language, or SBML, is used to efficiently import complex reaction
networks into LM kinetic/spatial models. Users intending on compiling from source should down-
load and install libSBML in order to ensure this functionality is available.

Finally, Lattice Microbes can be compiled with MPI in order to enable the distribution of replicates
across many compute nodes on a cluster. We recommend OpenMPI for clusters without Infiniband
interconnects and MVAPICH for clusters with Infiniband.

Lattice Microbes is not a GUI program, it must be used from the command line. This enables it
to efficiently run on high performance computing (HPC) clusters with minimal overhead. Conse-
quently, all user interaction with the software, including installation, must be performed through
the command line interface. In this chapter, commands to be executed from the command line
are written as: “[user@host ∼/usr]$ ls” which means to run the command “ls” from the
directory “∼/usr”.

9

http://www.ks.uiuc.edu/Research/vmd/
https://gephi.org/
http://www.cytoscape.org
http://www.open-mpi.org/software/ompi/v1.6/
http://www.mpich.org/downloads/
http://mvapich.cse.ohio-state.edu/download/

3.3 Installing a precompiled binary

Available at the above url are several binaries precompiled for use either with or without GPU
acceleration. Users should select the binary appropriate for their system.

For the purposes of these instructions, it is assumed that the Lattice Microbes software will be
installed into the directory /home/<user>/usr, also referred to as ∼/usr. If you wish to install
the software elsewhere, please adjust the instructions accordingly.

Download the appropriate binary distribution to a temporary directory /tmp. Open a terminal and
then change to the directory, unpack and copy the binary and libraries:

[user@host ∼]$ cd /tmp

[user@host /tmp]$ tar zxvf lm-2.2 <platform>.tgz

[user@host /tmp]$ cp lm-2.2/bin/* ∼/usr/bin
[user@host /tmp]$ mkdir -p ∼/usr/lib/lm
[user@host /tmp]$ cp -r lm-2.2/lib/lm ∼/usr/lib/lm
[user@host /tmp]$ cp -r lm-2.2/lib/python ∼/usr/lib/

Copy the VMD plugin to the plugins/molefile directory of your VMD installation:
[user@host /tmp]$ cp vmd/MACOSXX86/molfile/lmplugin.so /Applications/VMD

1.9.1.app/

Contents/vmd/plugins/MACOSXX86/molfile (OS X)

or:
[user@host /tmp]$ cp vmd/LINUXAMD64/molfile/lmplugin.so /usr/local/lib/vmd/plugins/

LINUXAMD64/molfile (LINUX)

Note: if you have installed the software into a non-global location, such as installing to∼/usr, you
will need to add the installation directory to you path. For example, you might add the following
line to your ∼/.bashrc or ∼/.bash profile file:

export PATH=$PATH:$HOME/usr/bin

Furthermore, if you have downloaded the CUDA version of Lattice Microbes, you must set the
environment variable for the loader to find the CUDA libraries. This can be done by adding the
following line to your ∼/.bashrc or ∼/.bash profile file:

(OS X)

export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/usr/local/cuda/lib

(LINUX)

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib

However, on Linux, this path may be slightly different, so if this command does not work, check
your directory to make sure you have the right PATH for the CUDA library. If you are still unsure,

10

check with your system administrator.

Finally, test the software installation:
[user@host /tmp]$ lm --help

If a help prompt is printed (enumerating the command line options) installation is likely correct.
Otherwise, check that libraries are in the correct environmental paths.

3.4 Installing from source code

As the computer architecture landscape becomes increasingly heterogeneous, many users may find
that it is easiest to simply compile Lattice Microbes from source code on their own machine. In
order to accomplish this as painlessly as possible, this section is designed with the average user—
not a software engineer—in mind.

3.4.1 Satisfying external dependencies
Although Lattice Microbes can be compiled and run without taking advantage of available GPU
hardware, we believe that the real strength of the software is the orders-of-magnitude speedup
gained through GPU acceleration. In order to use Lattice Microbes to its fullest, you will first
need to install the CUDA toolkit and drivers appropriate for your platform, if they are not installed
already. They can be found here:

http://developer.nvidia.com/cuda-downloads

The MacOSX installations are trivial—simply click through the installation wizards. Linux instal-
lation can be somewhat more challenging, and will likely require you exit out of the GUI interface.
Help can be found here:

http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/
index.html

Several other key features of the code also rely on external dependencies. Python is required for
programmatic setup of realistically crowded models of cells and analysis of simulation data. The
popular SBML file format can be used to import complex reaction networks. Both Python and lib-
SBML should be installed prior to compiling the code, if they are not already. MacOSX systems
generally have Python pre-installed, but Linux users can find it via a package manager or download
it here:

http://www.python.org/download/

The requisite SBML libraries can be found here:

http://sourceforge.net/projects/sbml/files/libsbml/

11

http://developer.nvidia.com/cuda-downloads
http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html
http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html
http://www.python.org/download/
http://sourceforge.net/projects/sbml/files/libsbml/

Again, installation on a Mac should be a breeze; installing libSBML for Linux should also be
straightforward. On Red Hat-based systems, the available .rpm package should be downloaded to
a convienient location, such as /home/<user>/usr, and installed using rpm in a terminal win-
dow, for example:

[user@host /home/<user>/usr]$ rpm2cpio libSBML-5.6.0-Linux-x64.rpm | cpio

-idmv

For Debian-derived distributions, the .deb package should be downloaded and installed using dpkg,
e.g.:

[user@host /home/<user>/usr]$ sudo dpkg -i libSBML-5.6.0-Linux-x64.deb

Although CUDA, Python, and libSBML are not strictly necessary, they impart functionalities cru-
cial for studying large and complex biochemical systems under in vivo crowding conditions. The
Protocol Buffers and HDF5 libraries, on the other hand, are absolutely essential to compiling the
code. The protobuf library (version 2.4.1 only!!!) is used for serialization of messages across the
transport layer. It is available from:

http://code.google.com/p/protobuf/downloads/list

This will need to be compiled from source. Download the latest version to a convenient directory
install:

[user@host /home/<user>/usr]$ tar zxvf protobuf-2.4.1.tar.gz

[user@host /home/<user>/usr]$ cd protobuf-2.4.1

[user@host /home/<user>/usr/protobuf-2.4.1]$ configure

[user@host /home/<user>/usr/protobuf-2.4.1]$ make

[user@host /home/<user>/usr/protobuf-2.4.1]$ sudo make install

The HDF5 library is used for reading models from and writing simulation data to HDF5 formatted
files. The HDF5 library is available from:

http://www.hdfgroup.org/HDF5/release/obtain5.html

Again, after downloading to a convenient directory extract the package, and move its contents to
someplace that it is not likely to be moved, such as:

/home/<user>/usr/hdf5-1.8.8-mac-x86_64-static/

Note the word “static” in the directory above; static libraries, which end with extensions .a or .la
for MacOS and LINUX, are compiled along with everything else into one monolithic executable
binary. Also available are shared or dynamic libraries, which end in .dylib or .so; these are not
compiled into the executable binary, but rather remain separate and are linked to. Whether you
compile against static or dynamic libraries is up to you, but you will have to treat them differently

12

http://code.google.com/p/protobuf/downloads/list
http://www.hdfgroup.org/HDF5/release/obtain5.html

when setting up your local.mk file, which will be described in Section 3.4.3.

Finally, if you intend to compile with MPI for use on a compute cluster, you will need to acquire
and install the requisite libraries. There are several implementations of MPI available, and care
should be taken in order to choose the right one for your cluster.
If one of the above packages is needed and is not already installed on your system, download a
binary or source installation package and follow the installation instructions that accompany it. If
you have problems, please contact your system administrator for assistance.
Note: if you install any external shared libraries into a non-global location, such as installing to
∼/usr, you will need to set an environment variable for the loader to find these libraries. For
example, you might add the following line to your ∼/.bashrc or ∼/.bash profile file:

(OS X)
[user@host /home/<user>/usr]$ export DYLD LIBRARY PATH=$DYLD LIBRARY PATH:/usr/

local/cuda/lib

(LINUX)
[user@host /home/<user>/usr]$ export LD LIBRARY PATH=$LD LIBRARY PATH:/usr/

local/cuda/lib

where /usr/local/cuda/lib is the path to a dynamic library you will be compiling against, in this case
a CUDA library. This will need to be done for all of the dynamic libraries you compile against.

3.4.2 Unpack the source distribution
For the purposes of these instructions, it is assumed that the Lattice Microbes software will be
installed into the directory /home/<user>/usr, also referred to as ∼/usr. If you wish to install
the software elsewhere, please adjust the instructions accordingly.

Download the source distribution from the URL above to the directory ∼/usr/src. Then unpack
the software:

[user@host ∼]$ cd ∼/usr/src
[user@host ∼/usr/src]$ tar zxvf lm-2.2.tgz

[user@host ∼/usr/src]$ cd lm-2.2

3.4.3 Configuring the build for your local environment
The Lattice Microbes source distribution ships with two default configuration files, one for Linux
and one for Mac OS X. These files are located at:

docs/config/local.mk.linux

and
docs/config/local.mk.osx.

13

To begin, copy the file corresponding to your system to local.mk:

[user@host ∼/usr/src/lm-2.2]$ cp docs/config/local.mk.<platform> local.mk

Edit the local.mk file to contain the correct options and file locations for your local environ-
ment. For example, if you installed the HDF5 and protobuf libraries into the /home/<user>/usr
directory, you should set the PROTOBUF and HDF5 options as follows:

HDF5_DIR := /home/<user>/usr

PROTOBUF_DIR := /home/<user>/usr

Note: the HDF5 library actually has two dependencies of its own—SZIP and ZLIB—and the
corresponding libraries are likely bundled with the software you downloaded. This will work for
linking dynamically against the libraries.
Each optional package has a section in the local.mk file that is initially disabled and begins with
a line like:

USE_XXXX := 0

To enable a specific package, set the flag corresponding to the package to 1 and set the options and
locations appropriately. For example, if you are using Open MPI you might set the MPI options as
follows:

USE_MPI := 1
MPI_COMPILE_FLAGS = -DOMPI_SKIP_MPICXX=1 $(shell mpicc --showme:compile)
MPI_LINK_FLAGS = $(shell mpicc --showme:link)

For alternate MPI implementations you may need to experiment with the mpicc command to
discover the correct settings or look at the example configuration files included with the Lattice
Microbes source distribution.

If you are using Python 2.7 you might set the Python options as follows:

USE_PYTHON := 1
PYTHON_SWIG := /usr/bin/swig
PYTHON_INCLUDE_DIR := ‘python-config --includes‘
PYTHON_LIB := ‘python-config --libs‘

If you are using CUDA with a capable device you might set the CUDA options as follows:

USE_CUDA := 1
CUDA_DIR := /usr/local/cuda

The location of your CUDA DIR will depend on your installation of Cuda. ou may also need
to change the CUDA ARCH variable to match your GPU version. You can determine your
GPU’s compute capability you need to enable by visiting https://developer.nvidia.
com/cuda-gpus.
If you want to build Lattice Microbes with support for importing SBML files (and have libSBML
installed to /home/<user>/usr) you might set the SBML options as follows:

14

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus

USE_SBML := 1
SBML_DIR := /home/<user>/usr

(OS X) If you want to build the VMD plugin and have VMD installed to the Applications folder
you might set the VMD options to:

USE_VMD := 1
VMD_DIR := "/Applications/VMD\ 1.9.1.app/Contents/vmd"

(LINUX) If you want to build the VMD plugin and have VMD installed to /usr/local you might
set the VMD options to:

USE_VMD := 1
VMD_DIR := /usr/local/lib/vmd

Finally, you should set the installation location and build name for the Lattice Microbes software
at the top of the local.mk file:

BUILD_DIR := Build-osx
INSTALL_PREFIX := /home/<user>/usr

Additional Compile Time Features

There are additional compile time flags that can be enabled to allow for nonstandard features
in Lattice Microbes. If the option is specified as a FLAG it can be enabled by adding them to
both CCFLAGS and CUDA FLAGS defined in your local.mk. If the option is specified as a
FEATURE it can be defined in local.mk. These are:

• -DGLOBAL S MATRIX – FLAG – Enable this flag if your stoichiometry matrix is large.
By default the S matrix is stored in GPU constant memory, and therefore the number of
species times the number of reactions must be less than 4096 (16KB). By enabling this
feature, the maximum size of the S matrix is increased to 262144 (1MB) allowing for up to
1024 reactions with 256 species.

• -DLATTICE MAX OCCUPANCY=16 – FLAG – Enabling this flag doubles the maximum
particles per site from 8 to 16, doubling the memory cost and potentially slowing the simu-
lation speed. WARNING: There is no support for 8/16 particle lattice interoperability.
Files created by code with a specific occupancy should only be read and written by
binaries built with the same value.

• USE VERBOSITY LEVEL=# – FEATURE – Specify the verbosity of the Lattice Microbes
output to the console/standard out. A larger number means more logging/debugging infor-
mation is printed. A smaller number means less. The default level is 4 and a level of 10 will
turn on debugging symbols during compile time.

• USE PROF – FEATURE – Enabling this feature will cause Lattice Microbes to time the
algorithm execution.

15

3.4.4 Build and install the software
Now that the build is configured, build and install the source code:

[user@host ∼/usr/src/lm-2.2]$ make LOCALMK=local.mk

[user@host ∼/usr/src/lm-2.2]$ sudo make install

Note: if you have installed the software into a non-global location, such as installing to∼/usr, you
will need to add the installation directory to you path. For example, you might add the following
line to your ∼/.bashrc file:

export PATH=$PATH:$HOME/usr/bin

Finally, test the software installation:

[user@host ∼/usr/src/lm-2.2]$ lm --help

If no errors occur, the software is installed correctly. If you get errors about a missing library, you
will likely have to add their paths to the library path environment variable.

3.5 pyLM Installation

pyLM comes with both the source and the binary distribution of Lattice Microbes. Configuring
pyLM to work requires installing external software and setting environment paths to the correct
locations.

One the Lattice Microbes installation is complete, the paths that Python looks for code in must be
updated. Add the paths to your ∼/.bashrc or ∼/.bash profile:

export PYTHONPATH=/home/<user>/usr/lib/lm:$PYTHONPATH
export PYTHONPATH=/home/<user>/usr/lib/python:$PYTHONPATH

3.5.1 External Libraries
The instructions in this section may only be applicable for the particular version of the libraries
that are listed. If the installation fails, please see the documentation on the website or in the tar
file. Most of these can be installed via a package manager or via “pip”.

Installing h5py

Once downloaded, h5py can be installed with the following set of commands:

[user@host /tmp]$ tar -xvf h5py-2.2.0.tar.gz

[user@host /tmp]$ cd h5py-2.2.0

[user@host /tmp/h5py-2.2.0]$ python setup.py build --hdf5=/home

/<user>/usr/hdf5-1.8.8-mac-x86 64-static/lib

16

[user@host /tmp/h5py-2.2.0]$ python setup.py test

[user@host /tmp/h5py-2.2.0]$ sudo python setup.py install

Alternatively, this can be installed via pip:

[user@host /tmp]$ pip install h5py

Installing NumPy

NumPy can be installed on almost any system from binary.

Installing SciPy

SciPy can be installed on almost any system from binary.

Installing iGraph

iGraph can be installed for Mac from binary.
For Linux machines, you must first install the C library:

[user@host /tmp]$ tar -xvf igraph-0.6.5.tar.gz

[user@host /tmp]$ cd igraph-0.6.5

[user@host /tmp/igraph-0.6.5]$./configure

[user@host /tmp/igraph-0.6.5]$ make

[user@host /tmp/igraph-0.6.5]$ sudo make install

Then the following commands may be used to build the python interface:

[user@host /tmp]$ tar -xvf python-igraph-0.6.5.tar.gz

[user@host /tmp]$ cd python-igraph-0.6.5

[user@host /tmp/python-igraph-0.6.5]$ python setup.py build

[user@host /tmp/python-igraph-0.6.5]$ sudo python setup.py install

Alternatively, this can be installed via pip:

[user@host /tmp]$ pip install python-igraph

Installing pygexf

First, you must install lxml:

[user@host /tmp]$ tar -xvf lxml-3.2.4.tar.gz

[user@host /tmp]$ cd lxml-3.2.4

[user@host /tmp/lxml-3.2.4]$ python setup.py build

17

[user@host /tmp/lxml-3.2.4]$ sudo python setup.py install

Alternatively, this can be installed via pip:

[user@host /tmp]$ pip install lxml

Finally, you can install pygexf:

[user@host /tmp]$ unzip pygexf-master.zip

[user@host /tmp]$ cd pygexf-master

[user@host /tmp/lxml-3.2.4]$ sudo easy install pygexf

3.5.2 Testing
Several test input files are included in the pyLM distribution. To test that pyLM and Lattice Mi-
crobes are installed correctly, go to the “src/python/Examples” directory in the source directory
and execute the command:

[user@host /tmp]$ python example-bimol.py -o cmebimol.lm

If no errors are reported, these programs are installed correctly. Next, a test of the correct instal-
lation of the other libraries should be performed. Execute the following command in the same
directory:

[user@host /tmp/]$ python example-bimol-pp.py -o cmebimolpp.lm

If all goes well, two plots will be made in the directory named “BimolSpeciesTrace.png” and
“BimolSpeciesFit.png”. In addition, a graph file named “BimolGraph.gml” will be made in that
directory which can be opened with popular network viewing software such as Gephi (https:
//gephi.org) or Cytoscape (http://www.cytoscape.org). Representative examples of
each of these file can be seen in Figures 3.1, 3.2 and 3.3.

3.6 In case of difficulty

If you experience problems when building the software, email the Lattice Microbes User List:
latticemicrobes-users@lists.illinois.edu.
Also, consider joining the Lattice Microbes User List by visiting:
https://lists.illinois.edu/lists/info/latticemicrobes-users

18

https://gephi.org
https://gephi.org
http://www.cytoscape.org
latticemicrobes-users@lists.illinois.edu
https://lists.illinois.edu/lists/info/latticemicrobes-users

Figure 3.1: Average (top) and Variance (bottom) of the three species over 50 replicates for the reversible
bimolecular reaction.

Figure 3.2: The same figure as before, except with fits to the rates performed in Python.

19

('A', 'B')->C C->('A', 'B')

A

B

C

Figure 3.3: The graph of the simple bimolecular reaction. Nodes in cyan are reacting species and red are
reactions. Direction of the arrows indicate flow of reactants.

20

Chapter 4

Examples Simulation Specifications

Many examples demonstrating features of pyLM exist both on the website (http://www.scs.
illinois.edu/schulten/lm/download/lm22/ExampleFiles.tgz) and in the source
code (src/python/Examples). Each demonstrates several different features of pyLM, and it
is suggested that you read and work through all of the examples before starting to use pyLM for
your project. It is recommended that you work through the problems in the order shown, as func-
tionality documented in an earlier file is not described again in later files.
Various functionality is demonstrated in the examples, including:

• CME

1. example-bimol.py – Demonstrates process of defining molecular species, reactions and
initial conditions in a CME simulation

2. example-bimolConc.py – Same as example-bimol.py using concentrations instead of
particle numbers

3. example-bimol-pp.py – Demonstrates the general trends for writing post-processing
code for a CME simulation

4. example-rnaprotein.py – An example of constitutive gene expression

5. example-LotkaVolterra.py – An example of the well known Lotka-Volterra problem
(predator-prey) simulated with stochasticity

6. example-stochasticResonator.py – An example of a stochastic resonator problem with
CME

7. example-lac2state.py – This file demonstrates a more complex reaction scheme

• RDME

1. example-MichaelisMenten.py – This demonstrates how to define a simulation domain
in a 3D RDME simulation and defines an enzyme/substrate reaction system to be sim-
ulated in the domain

2. example-minde.py – A demonstration of the popular Min system of E. coli showing
how to construct default cell shapes, customize diffusion coefficients in regions and
diffusion coefficients between regions

21

http://www.scs.illinois.edu/schulten/lm/download/lm22/ExampleFiles.tgz
http://www.scs.illinois.edu/schulten/lm/download/lm22/ExampleFiles.tgz

3. example-restart.py – This demonstrates how to restart an RDME simulation, however
it is a hack as of now

• Advanced Setup

1. example-shapes.py – An example showing how to define complex objects such as
boxes, spheres, tori, ellipses and intersections, unions and differences of the various
objects

2. example-tightPackedCellArray.py – This example shows a pySTDLM feature that packs
a cell shape into a tight regular grid spanning the whole RDME domain

3. example-extendrdme.py – This example shows how to extend the basic RDME solver
with a hook that is run on every lattice write, allowing the user to modify the simulation
based on the simulation state

22

Chapter 5

License and Copyright

University of Illinois Open Source License
Copyright c© 2008-2013 Luthey-Schulten Group, All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the Software), to deal with the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimers.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimers in the documentation and/or other materials provided
with the distribution.

• Neither the names of the Luthey-Schulten Group, University of Illinois at Urbana-Champaign,
nor the names of its contributors may be used to endorse or promote products derived from
this Software without specific prior written permission.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

23

Bibliography

[1] Roberts, E, Stone, JE, Sepulveda, L, Hwu, WMW, Luthey-Schulten, Z (2009) Long time-
scale simulations of in vivo diffusion using GPU hardware. The Eighth IEEE International
Workshop on High-Performance Computational Biology.

[2] Roberts, E, Stone, JE, Luthey-Schulten, Z (2013) Lattice microbes: high-performace stochas-
tic simulation method for the reaction-diffusion master equation. J. Comp. Chem. 3:245–255.

[3] Hallock, M, Stone, JE, Roberts, E, Fry, C, Luthey-Schulten, Z (2014) Long time-scale simu-
lations of in vivo reaction diffusion processes on multiple gpus. In Press.

[4] Vigelius, M, Lane, A, Meyer, B (2011) Accelerating Reaction-Diffusion Simulations with
General-Purpose Graphics Processing Units. Bioinform 27:288–290.

[5] Peterson, J, Hallock, M, Cole, J, Luthey-Schulten, Z (2013) A Problem Solving Environment
for Stochastic Biological Simulations. Proceedings High Performance Computing Network-
ing, Storage and Analysis Companion (SCC).

[6] Cole, J, Hallock, M, Labhsetwar, P, Peterson, J, Stone, J, Luthey-Schulten, Z (2013) Compu-
tational Systems Biology, eds Kriete, A, Eils, R (Academic Press).

[7] Gillespie, DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys
Chem 81:2340–2361.

[8] Gibson, M, Bruck, J (2000) Efficient exact stochastic simulation of chemical systems with
many species and many channels. J Phys Chem 104:1876–1889.

[9] Elf, J, Ehrenberg, M (2004) Spontaneous separation of bi-stable biochemical systems into
spatial domains of opposite phases. IEE Syst Biol 1:230–236.

[10] Hallock, MJ, Stone, JE, Roberts, E, Fry, C, Luthey-Schulten, Z (2014) Simulation of re-
action diffusion processes over biologically relevant size and time scales using multi-GPU
workstations. Parallel Computing 40:86–99.

24

	List of Figures
	List of Tables
	Introduction
	Lattice Microbes
	pyLM

	Capabilities
	Stochastic Simulations
	Well-Stirred Simulations
	Spatially-Resolved Simulations

	Problem Solving Environment

	Installation
	System requirements
	Software Requirements
	Installing a precompiled binary
	Installing from source code
	Satisfying external dependencies
	Unpack the source distribution
	Configuring the build for your local environment
	Build and install the software

	pyLM Installation
	External Libraries
	Testing

	In case of difficulty

	Examples Simulation Specifications
	License and Copyright
	Bibliography

