U of I

So Hirata

Marvin T. Schmidt Professor
Department of Chemistry

Noyes Laboratory 355F
600 S. Mathews Ave.
Urbana, IL 61801-3364

Tel: (217) 244-0629
Fax: (217) 244-3186
Email: sohirata@illinois.edu

The Hirata Quantum Many-Body Theory Group


Member of U.S. Department of Energy CCS Center: SPEC led by Pacific Northwest National Laboratory.

Filmography (Writer & producer: So Hirata; Director of photography: Alex Ibarra)

Theorems, Proofs, Conjectures, and Concepts

  • New 2023: Failures of Feynman-Dyson diagrammatic perturbation theory (Hirata).
  • New 2023: Recursions and linked-diagram theorem of finite-temperature MBPT for vibrations (Qin).
  • 2022: Resolution to the Kohn-Luttinger conundrum (Hirata).
  • 2021: Recursions and linked-diagram theorem of finite-temperature MBPT for electrons (Hirata).
  • 2021: Elucidating the cause of the Kohn-Luttinger conundrum (Hirata).
  • 2019-2020: Finite-temperature perturbation theory in the grand canonical ensemble (Hirata, Hirata).
  • 2020: Finite-temperature perturbation theory in the canonical ensemble (Jha).
  • 2019: Invalidating textbook finite-temperature perturbation theory (Jha).
  • 2017: Recursions and linked- and irreducible-diagram theorems of MBGF (Hirata).
  • 2017: Universal short-range shape of Coulomb hole (Johnson).
  • 2013-2015: Feynman-Goldstone diagrammatic rules for vibrations (Hermes, Faucheaux).
  • 2015: Singlet and triplet instability theorems (Yamada).
  • 2014: Normal-ordered vibrational Hamiltonian (Hirata).
  • 2014: Conjecture of the mutual exclusion of variationality and size consistency (Hirata).
  • 2014: Real-space, Green's-function-trace interpretation of Feynman-Goldstone diagrams (Willow).
  • 2013: Concepts of Dyson coordinates and geometry (Hermes).
  • 2012: Proof of existence of thermodynamic limit in metallic and insulating crystals (Hirata).
  • 2011: Size-consistency theorems (Hirata).
  • 2009: Elucidation of error asymptote of the Born-Oppenheimer approximation (Hirata).
  • 2003: Symbolic algebra for automated electronic structure method development (Hirata).
  • 2001: Proof of uniqueness of the OEP integral equation solution (Talman).
  • Circa 1985: Three-dimensional Pythagorean theorem (Hirata).

Chemical Theories, Methods, and Algorithms

  • New 2023: General-order finite-temperature MBPT for vibrations (Qin).
  • New 2022: Nonvanishing quadrature derivatives in DFT gradients (Hirata).
  • New 2022: Monte Carlo four-component relativistic MP2 (Cruz).
  • 2021: General-order finite-temperature MBPT (Hirata).
  • 2021: Finite-temperature vibrational full CI (Qin).
  • 2021: Monte Carlo MP4 (Doran).
  • 2020: Direct-sampling Monte Carlo acceleration (Doran).
  • 2020: Control-variate Monte Carlo acceleration (Doran).
  • 2020: Grid-based DMC (Kunitsa).
  • 2019: Monte Carlo GF3 (Doran).
  • 2018: Monte Carlo GF2-F12 (Johnson).
  • 2018: STEOM-XVCC (Faucheaux).
  • 2017: Low-rank decomposition of PES (Rai).
  • 2017: General-order MBGF (Hirata).
  • 2016: Monte Carlo MP2-F12 (Johnson).
  • 2016: Grid-based MP2 (Hirata).
  • 2015: XVCC and EOM-XVCC (Faucheaux).
  • 2015: Finite-temperature CCD for 1D solids (Hermes).
  • 2015: ΔMPn (Hirata).
  • 2014: Monte Carlo XVSCF (Hermes).
  • 2014: Monte Carlo MP2 for 1D solids (Willow).
  • 2014: Monte Carlo XVMP2 (Hermes).
  • 2014: Finite-temperature full CI (Kou).
  • 2014: Monte Carlo MP2-F12 (nonvariational) (Willow).
  • 2014: Monte Carlo MP3 (Willow).
  • 2014: Finite-temperature MP2 for 1D solids (He).
  • 2013: Redundant-walker Monte Carlo acceleration (Willow).
  • 2013: XVMP2 (Hermes).
  • 2013: Monte Carlo MP2 for self-energies (Willow).
  • 2012: Monte Carlo MP2 (Willow).
  • 2012: Variationally optimized molecular coordinates (Yagi).
  • 2011: XVSCF (Hirata, Keçeli, Hermes).
  • 2011: Hybrid CCSD/MP2 for 1D solids (Ohnishi).
  • 2010: Logarithm MP2 for 1D solids (Ohnishi).
  • 2010: Modulo CCSD for 1D solids (Keçeli).
  • 2010: MP2-F12 for 1D solids (Shiozaki).
  • 2009: Modulo MP2 for 1D solids (Shimazaki).
  • 2009: CCSD(2)-F12, CCSD(3)-F12, CCSDT(2)-F12, and CCSD(T)-F12 (Shiozaki).
  • 2009: CCSDT-F12 and CCSDTQ-F12 (Shiozaki).
  • 2008: CCSD-F12 (Shiozaki).
  • 2007: Grid-based HF (Shiozaki).
  • 2007: EOM-CCSD(2), EOM-CCSD(3), and CCSD(3) (Shiozaki).
  • 2007: Relativistic CCSDTQ and EOM-CCSDTQ (Hirata).
  • 2007: EA-EOM-CCSDTQ (Kamiya).
  • 2006: IP-EOM-CCSDTQ (Kamiya).
  • 2006: TDDFT with frequency-dependent exact exchange (OEP) kernel (Shigeta).
  • 2005: CIS(3) and CIS(4) (Hirata).
  • 2005: Embedded fragmentation of electronic energies (Hirata).
  • 2004: CCSD(2) and CCSDT(2) (available in NWChem) (Hirata).
  • 2004: EOM-CCSDTQ (available in NWChem) (Hirata).
  • 2003: Self-contained asymtotic correction for TDDFT (availablein NWChem) (Hirata).
  • 2002: MP2-based correlation functional of DFT (Grabowski).
  • 2001: TDDFT with the exact exchange (OEP) functional (Hirata).
  • 2001: CCSD for 1D solids (Hirata).
  • 2001: General-order perturbation theory from general-order CC (Hirata).
  • 2000: General-order EOM-CC, IP-EOM-CC, and EA-EOM-CC (Hirata).
  • 2000: General-order CC (Hirata).
  • 2000: MBGF2 for excitons in 1D solids (Hirata).
  • 1999: Exact exchange (OEP) functional in Gaussian-basis-set DFT (Ivanov).
  • 1999: CIS, TDHF, and TDDFT for excitons in 1D solids (Hirata).
  • 1999: Tamm-Dancoff TDDFT (availablein Q-Chem and NWChem) (Hirata).
  • 1999: Open-shell TDDFT (availablein Q-Chem and NWChem) (Hirata).
  • 1998: MP2 analytical gradients for 1D solids (Hirata).
  • 1998: HF analytical Hessians for 1D solids (Hirata).
  • 1997: Hybrid DFT analytical gradients for 1D solids (Hirata).

Chemical Applications and Predictions

  • New 2023: Polyazene, polyazane, polyfluoroazane, polyoxane, and polytetrafluoroethylene (Hirata).
  • 2021: Monte Carlo MP2-F12 calculation of C60-C60 interaction (Doran).
  • 2020: Anharmonic phonon dispersion in polyethylene (Qin).
  • 2016: MP2 calculation of ice Ih thermodynamic anomalies (Salim).
  • 2015: MP2 calculation of liquid water (Willow).
  • 2015: MP2 calculation of thermal expansion in solid CO2 (Li).
  • 2014: CCSD/MP2 calculation of ice VIII spectra (Gilliard).
  • 2014: Peierls and charge-density-wave transitions (He).
  • 2013: MP2 calculation of a solid-solid phase transition in solid CO2 (Li).
  • 2012: MP2 calculation of pressure tuning of Fermi resonance in solid CO2 (Sode).
  • 2012: MP2 calculation of ice Ih spectra (He).
  • 2012: MP2 calculation of solid hydrogen fluoride under pressure (Sode).
  • 2010: CCSD/MP2 calculation of the anharmonic vibrational frequencies of polyethylene (Keçeli).
  • 2009: CCSD/MP2 calculation of solid hydrogen fluoride spectra (Sode).
  • 2009: Near-exact (99.996~100.004%) solution of the Schrödinger equation for H2O (Shiozaki).
  • 2008: MP2 calculation of solid formic acid spectra (Hirata).
  • 2007: CCSD(T) calculation of Fermi resonance in CO2 (Rodriguez-Garcia).
  • 2006: Anharmonic Franck-Condon factors (Rodriguez-Garcia).
  • 2005: EOM-CCSD calculation of a 247-atom system (Hirata).
  • 2004: Relativistic CCSDTQ for 20 diatomic hydrides and 5 triatomic hydrides (Hirata).
  • 2003: TDDFT calculations of 51 radical ions of PAH's (Hirata).
  • 2001: TDDFT calculations of polyenes (Hsu).
  • 1997: Prediction of the correct structure of polymethineimine (Hirata).
  • 1995: MP2 calculations of polyacetylene spectra (Hirata).